标准库 (8)
json
就传递数据而言,xml 是一种选择,还有另外一种,就是 json,它是一种轻量级的数据交换格式,如果读者要做 web 编程,是会用到它的。根据维基百科的相关内容,对 json 了解一二:
JSON(JavaScript Object Notation)是一种由道格拉斯·克罗克福特构想设计、轻量级的资料交换语言,以文字为基础,且易于让人阅读。尽管 JSON 是 Javascript 的一个子集,但 JSON 是独立于语言的文本格式,並且采用了类似于 C 语言家族的一些习惯。
关于 json 更为详细的内容,可以参考其官方网站:http://www.json.org
从官方网站上摘取部分,了解一下 json 的结构:
JSON 建构于两种结构:
- “名称/值”对的集合(A collection of name/value pairs)。不同的语言中,它被理解为对象(object),纪录(record),结构(struct),字典(dictionary),哈希表(hash table),有键列表(keyed list),或者关联数组 (associative array)。
- 值的有序列表(An ordered list of values)。在大部分语言中,它被理解为数组(array)。
python 标准库中有 json 模块,主要是执行序列化和反序列化功能:
- 序列化:encoding,把一个 Python 对象编码转化成 json 字符串
- 反序列化:decoding,把 json 格式字符串解码转换为 Python 数据对象
基本操作
json 模块相对 xml 单纯了很多:
>>> import json
>>> json.__all__
['dump', 'dumps', 'load', 'loads', 'JSONDecoder', 'JSONEncoder']
encoding: dumps()
>>> data = [{"name":"qiwsir", "lang":("python", "english"), "age":40}]
>>> print data
[{'lang': ('python', 'english'), 'age': 40, 'name': 'qiwsir'}]
>>> data_json = json.dumps(data)
>>> print data_json
[{"lang": ["python", "english"], "age": 40, "name": "qiwsir"}]
encoding 的操作是比较简单的,请注意观察 data 和 data_json 的不同——lang 的值从元组编程了列表,还有不同:
>>> type(data_json)
<type 'str'>
>>> type(data)
<type 'list'>
将 Python 对象转化为 json 类型,是按照下表所示对照关系转化的:
Python==> | json |
---|---|
dict | object |
list, tuple | array |
str, unicode | string |
int, long, float | number |
True | true |
False | false |
None | null |
decoding: loads()
decoding 的过程也像上面一样简单:
>>> new_data = json.loads(data_json)
>>> new_data
[{u'lang': [u'python', u'english'], u'age': 40, u'name': u'qiwsir'}]
需要注意的是,解码之后,并没有将元组还原。
解码的数据类型对应关系:
json==> | Python |
---|---|
object | dict |
array | list |
string | unicode |
number(int) | int, long |
number(real) | float |
true | True |
false | False |
null | None |
对人友好
上面的 data 都不是很长,还能凑合阅读,如果很长了,阅读就有难度了。所以,json 的 dumps() 提供了可选参数,利用它们能在输出上对人更友好(这对机器是无所谓的)。
>>> data_j = json.dumps(data, sort_keys=True, indent=2)
>>> print data_j
[
{
"age": 40,
"lang": [
"python",
"english"
],
"name": "qiwsir"
}
]
sort_keys=True
意思是按照键的字典顺序排序,indent=2
是让每个键值对显示的时候,以缩进两个字符对齐。这样的视觉效果好多了。
大 json 字符串
如果数据不是很大,上面的操作足够了。但是,上面操作是将数据都读入内存,如果太大就不行了。怎么办?json 提供了 load()
和 dump()
函数解决这个问题,注意,跟上面已经用过的函数相比,是不同的,请仔细观察。
>>> import tempfile #临时文件模块
>>> data
[{'lang': ('Python', 'english'), 'age': 40, 'name': 'qiwsir'}]
>>> f = tempfile.NamedTemporaryFile(mode='w+')
>>> json.dump(data, f)
>>> f.flush()
>>> print open(f.name, "r").read()
[{"lang": ["Python", "english"], "age": 40, "name": "qiwsir"}]
自定义数据类型
一般情况下,用的数据类型都是 Python 默认的。但是,我们学习过类后,就知道,自己可以定义对象类型的。比如:
以下代码参考:Json 概述以及 Python 对 json 的相关操作
#!usrbin/env Python
# coding=utf-8
import json
class Person(object):
def __init__(self,name,age):
self.name = name
self.age = age
def __repr__(self):
return 'Person Object name : %s , age : %d' % (self.name,self.age)
def object2dict(obj): #convert Person to dict
d = {}
d['__class__'] = obj.__class__.__name__
d['__module__'] = obj.__module__
d.update(obj.__dict__)
return d
def dict2object(d): #convert dict ot Person
if '__class__' in d:
class_name = d.pop('__class__')
module_name = d.pop('__module__')
module = __import__(module_name)
class_ = getattr(module, class_name)
args = dict((key.encode('ascii'), value) for key,value in d.items()) #get args
inst = class_(**args) #create new instance
else:
inst = d
return inst
if __name__ == '__main__':
p = Person('Peter',40)
print p
d = object2dict(p)
print d
o = dict2object(d)
print type(o), o
dump = json.dumps(p, default=object2dict)
print dump
load = json.loads(dump, object_hook=dict2object)
print load
如果你认为有必要打赏我,请通过支付宝:qiwsir@126.com,不胜感激。