19.10 自然选择之数学原理

要想让人工进化具有和自然进化同等的创造力,我们要么为其提供我们所无法提供的无限时间,要么借鉴自然进化更具创造力的因素(如果有的话)来提升它。不过至少,人工进化可以帮助我们阐释地球上生命进化的真正特点;而无论是现有的观察还是历史的化石,都无法做到这一点。

我根本不担心进化理论可能会由那些没有生物学学位的后达尔文主义者所接管。人工进化早已教给我们重要一课——进化不是一个生物过程。它整合了技术的、数学的、信息的和生物学的过程。几乎可以说,进化是一条物理法则,适用于所有的群体,不管它们有没有基因。

达尔文的自然选择说中最不能让人接受的部分就是它的必然性。自然选择的条件非常特殊,但这些条件一旦满足,自然选择就会无可避免地发生!

自然选择只能发生在种群或者群集的事物中间。这实际上是一种发生在空间和时间中的乱众现象。这一进程所涉及的种群必定具有以下特点:(1)个体间存在某种特性上的变化;(2)这些特性对个体的生育率、繁殖力或者存活能力带来某些差异;(3)这些特性能够从亲代以某种方式传递给子代。如果具备了这些条件,自然选择就必然会出现,就像6之后必是7,或者硬币必然有正反两面一样。正如进化理论家约翰·恩德尔所说,“自然选择也许不该被称为生物学定律。它发生的原因不是生物学,而是概率论。”

但自然选择并不是进化,进化也不等同于自然选择,正如算术不是数学,数学也不等同于算术一样。当然,你可以声称数学其实就是加法的组合,减法是加法的逆运算,乘法是连续的加法,而所有基于这些运算的复杂函数都只是加法的扩展。这与新达尔文主义者的逻辑有些相似:所有的进化都是对自然选择组合的扩展。虽说这有一点点道理,但它阻绝了我们对更为复杂事物的理解和接受。乘法确实就是某种连加运算,但从这种快捷运算中涌现出了全新的力量,如果我们只把乘法看成是加法的重复,就永远也不可能掌握这种力量。只满足于加法,你就永远得不到E=mc2

我相信存在一种生命的数学。自然选择也许就是这种数学中的加法。要想充分解释生命的起源、复杂性的趋势以及智能的产生,不仅仅需要加法,还需要一门丰富的数学,由各种互为基础的复杂函数所组成。它需要更为深入的进化。单凭自然选择是远远不够的。要想大有作为,就必须融入更富创造力和生产力的过程。除去自然选择,它必须有更多的手段。

后达尔文主义者已经证明,由一个维度上的自然选择推进的单一进化是不存在的。进化应该是既有宽度,又有纵深的。深度进化是多种进化的聚合,是一位多面的神祇,一位千臂的造物主,他的造物方法多种多样,自然选择也许只是其中最普适的一个方法。深度进化正是由这许许多多尚未明了的进化所构成,就好像我们的心智是一个兼收并蓄的社会一样。不同的进化在不同的尺度上,以不同的节律,用不同的风格运行着。此外,这种混合的进化会随时间的推移而改变。某些类型的进化对于早期的原型生命来说很重要,另一些则在四十亿年后的今天承担着更重要的责任。某种进化(自然选择)会出现在每一处地方,其他进化则可能只是偶尔一见,起着特定的作用。这种多元化的深度进化,犹如智能,是从某种动态群落中涌现出来的。

当我们构建人工进化来繁育机器或者软件时,也要考虑到进化的这种异质特性。我期待着在具有开放性和可持续创造力的人工进化中看到以下特性(我相信生物进化中也存在着这些特性,但是人工进化会将这些特性表现得更显著):

◆ 共生——便捷的信息交换以允许不同的进化路径汇聚在一起。

◆ 定向变异——非随机变异以及与环境的直接交流和互换机制。

◆ 跳变——功能聚类、控制的层级结构、组成部分的模块化,以及同时改变许多特性的适应过程。

◆ 自组织——偏向于某种特定形态(譬如四轮)并使之成为普遍标准的发展过程。

人工进化不能创造一切。虽然我们能够细致无遗地想象出很多东西,而且按照物理和逻辑法则来判断它们也一定能够运转,但由于合成进化自身的束缚,我们无法真的将其实现。

那些整天带着计算机的后达尔文主义者们下意识地问道:进化的极限在哪里?什么是进化做不到的?有机体进化的极限也许无法突破,但它的倾向和力所不逮之处却可能藏有为致力于进化研究的天才们所准备的答案。在可能的生物这片原野上,哪儿还有未被占据的黑洞呢?对此我也只能引述阿博彻那个怪人的话,他说:“我更关心那些空白的地方,那些能想象得到却实现不了的形态。”用列万廷的话说就是:“进化不能产生所有的东西,但可以解释某些东西。”

注释

〔1〕 盲眼钟表匠:现代生物学中流行的一个隐喻,“钟表匠”比喻“进化机制”,“盲眼”则凸显了进化的两个特点:基因随机变异以及进化无法预知方向,又暗指“不需假定有个深思熟虑的创世主就能解释生命世界的繁复与瑰丽”。(理查德·道金斯,《盲眼钟表匠》)

〔2〕 由四个符号编码而成的长链分子:这里指DNA,DNA分子由四种碱基排列而成。

〔3〕 斯马茨(J. C. Smuts, 1870~1950):南非政治家、生物学家。1926年发表《整体论与进化》,提出进化的整体论解释。

〔4〕 克雷布斯循环(Krebs Cycle):生物化学家克雷布斯(Hans Adolf Krebs)于1937年发现的一种代谢,普遍存在于需氧生物体中,又称为三羧循环或柠檬酸循环。糖类、脂肪和氨基酸会在这种代谢中产生出ATP(三磷酸腺苷),为细胞提供能量。对于真核生物来说(比如人类),这一过程发生在线粒体中。

〔5〕 同源异形盒(Homeobox):也称同位序列,是引导动物生长发育的一段基因,最初是由爱德华·刘易斯等人在对果蝇的研究中发现的。其作用是在胚胎发育的时候赋予身体前后不同部位的细胞以空间特异性,以便把不同部位分化出来,在正确的位置发育出正确形态的器官。

〔6〕 圣提雷尔(Etienne Saint Hilaire, 1772~1844)和小圣提雷尔(Isidore Geoffroy Saint Hilaire, 1805~1861):圣提雷尔是法国博物学家,拉马克的同事。他捍卫并发展了拉马克进化论,并认为所有生物都有内在的一致性。小圣提雷尔是法国动物学家,早年曾对数学感兴趣,但最终投身于自然史和医学,曾担任他父亲的助手。他提出了“动物行为学”(ethology)的概念,并在1832年到1837年间发表了开创性的著作《畸形学》(Teratology)。(译自维基百科)

〔7〕 负选择(Negative Selection):也称否定选择,指自然选择过程中淘汰有害个体的倾向,因此也叫“净化选择”(Purifying Selection)。

〔8〕 非染色体DNA(nonchromosomal DNA):存在于细胞质内的DNA,比如线粒体DNA、叶绿体DNA、细胞质粒DNA等。

〔9〕 女性一生所有的卵细胞都是在出生时就准备好了的,以后会不断减少。刚出生的女婴有不到100万个卵细胞,到初潮时只有约25万个了,到绝经为止,女性一生所能排出的卵子总数只有不到500个。

〔10〕 《进化的物质基础》:The Material Basis of Evolution

〔11〕 跳变论:saltationism

〔12〕 吸引域(Basin of Attraction):系统空间中某些点的集合。当系统以这个集合中的点为起始点时,可以动态地收敛(或进化)到某个特定的吸引子(即稳态)。

〔13〕 《走向新的生物学哲学》:Toward a New Philosophy of Biology: Observations of an Evolutionist, Ernst Mayr, Harvard University Press, 1989.

〔14〕 可行(feasible):数学规划中的术语,指符合约束条件的问题解。

〔15〕 可能的生物空间:这一段提到了两个只有一字之差的空间:“可能的生物空间”与“可能的生命空间”。前者是后者的一个子空间。在可能的生命空间中,可行的生命形式可能非常密集,这取决于我们如何定义生命,包括人工生命等;而可能的生物空间中,可行的生物形式可能非常稀疏,因为可行的生物必须能够在自然环境中生存。举个不恰当的类比,就好比整数集合与实数集合一样。