3.6 内存分配与回收策略

Java技术体系中所提倡的自动内存管理最终可以归结为自动化地解决了两个问题:给对象分配内存以及回收分配给对象的内存。关于回收内存这一点,我们已经使用了大量篇幅去介绍虚拟机中的垃圾收集器体系以及运作原理,现在我们再一起来探讨一下给对象分配内存的那点事儿。

对象的内存分配,往大方向讲,就是在堆上分配(但也可能经过JIT编译后被拆散为标量类型并间接地栈上分配[1]),对象主要分配在新生代的Eden区上,如果启动了本地线程分配缓冲,将按线程优先在TLAB上分配。少数情况下也可能会直接分配在老年代中,分配的规则并不是百分之百固定的,其细节取决于当前使用的是哪一种垃圾收集器组合,还有虚拟机中与内存相关的参数的设置。

接下来我们将会讲解几条最普遍的内存分配规则,并通过代码去验证这些规则。本节下面的代码在测试时使用Client模式虚拟机运行,没有手工指定收集器组合,换句话说,验证的是在使用Serial/Serial Old收集器下(ParNew/Serial Old收集器组合的规则也基本一致)的内存分配和回收的策略。读者不妨根据自己项目中使用的收集器写一些程序去验证一下使用其他几种收集器的内存分配策略。

3.6.1 对象优先在Eden分配

大多数情况下,对象在新生代Eden区中分配。当Eden区没有足够空间进行分配时,虚拟机将发起一次Minor GC。

虚拟机提供了-XX:+PrintGCDetails这个收集器日志参数,告诉虚拟机在发生垃圾收集行为时打印内存回收日志,并且在进程退出的时候输出当前的内存各区域分配情况。在实际应用中,内存回收日志一般是打印到文件后通过日志工具进行分析,不过本实验的日志并不多,直接阅读就能看得很清楚。

代码清单3-5的testAllocation()方法中,尝试分配3个2MB大小和1个4MB大小的对象,在运行时通过-Xms20M、-Xmx20M、-Xmn10M这3个参数限制了Java堆大小为20MB,不可扩展,其中10MB分配给新生代,剩下的10MB分配给老年代。-XX:SurvivorRatio=8决定了新生代中Eden区与一个Survivor区的空间比例是8:1,从输出的结果也可以清晰地看到“eden space 8192K、from space 1024K、to space 1024K”的信息,新生代总可用空间为9216KB(Eden区+1个Survivor区的总容量)。

执行testAllocation()中分配allocation4对象的语句时会发生一次Minor GC,这次GC的结果是新生代6651KB变为148KB,而总内存占用量则几乎没有减少(因为allocation1、allocation2、allocation3三个对象都是存活的,虚拟机几乎没有找到可回收的对象)。这次GC发生的原因是给allocation4分配内存的时候,发现Eden已经被占用了6MB,剩余空间已不足以分配allocation4所需的4MB内存,因此发生Minor GC。GC期间虚拟机又发现已有的3个2MB大小的对象全部无法放入Survivor空间(Survivor空间只有1MB大小),所以只好通过分配担保机制提前转移到老年代去。

这次GC结束后,4MB的allocation4对象顺利分配在Eden中,因此程序执行完的结果是Eden占用4MB(被allocation4占用),Survivor空闲,老年代被占用6MB(被allocation1、allocation2、allocation3占用)。通过GC日志可以证实这一点。

注意 作者多次提到的Minor GC和Full GC有什么不一样吗?

新生代GC(Minor GC):指发生在新生代的垃圾收集动作,因为Java对象大多都具备朝生夕灭的特性,所以Minor GC非常频繁,一般回收速度也比较快。

老年代GC(Major GC/Full GC):指发生在老年代的GC,出现了Major GC,经常会伴随至少一次的Minor GC(但非绝对的,在Parallel Scavenge收集器的收集策略里就有直接进行Major GC的策略选择过程)。Major GC的速度一般会比Minor GC慢10倍以上。

代码清单3-5 新生代Minor GC


private static final int_1MB=1024*1024;

/**

*VM参数:-verbose:gc-Xms20M-Xmx20M-Xmn10M-XX:+PrintGCDetails

-XX:SurvivorRatio=8

*/

public static void testAllocation(){

byte[]allocation1,allocation2,allocation3,allocation4;

allocation1=new byte[2*_1MB];

allocation2=new byte[2*_1MB];

allocation3=new byte[2*_1MB];

allocation4=new byte[4*_1MB];//出现一次Minor GC

}


运行结果:


[GC[DefNew:6651K->148K(9216K),0.0070106 secs]6651K->6292K(19456K),

0.0070426 secs][Times:user=0.00 sys=0.00,real=0.00 secs]

Heap

def new generation total 9216K,used 4326K[0x029d0000,0x033d0000,0x033d0000)

eden space 8192K,51%used[0x029d0000,0x02de4828,0x031d0000)

from space 1024K,14%used[0x032d0000,0x032f5370,0x033d0000)

to space 1024K,0%used[0x031d0000,0x031d0000,0x032d0000)

tenured generation total 10240K,used 6144K[0x033d0000,0x03dd0000,0x03dd0000)

the space 10240K,60%used[0x033d0000,0x039d0030,0x039d0200,0x03dd0000)

compacting perm gen total 12288K,used 2114K[0x03dd0000,0x049d0000,0x07dd0000)

the space 12288K,17%used[0x03dd0000,0x03fe0998,0x03fe0a00,0x049d0000)

No shared spaces configured.


[1]JIT即时编译器相关优化可参见第11章。