6.3.2 常量池
紧接着主次版本号之后的是常量池入口,常量池可以理解为Class文件之中的资源仓库,它是Class文件结构中与其他项目关联最多的数据类型,也是占用Class文件空间最大的数据项目之一,同时它还是在Class文件中第一个出现的表类型数据项目。
由于常量池中常量的数量是不固定的,所以在常量池的入口需要放置一项u2类型的数据,代表常量池容量计数值(constant_pool_count)。与Java中语言习惯不一样的是,这个容量计数是从1而不是0开始的,如图6-3所示,常量池容量(偏移地址:0x00000008)为十六进制数0x0016,即十进制的22,这就代表常量池中有21项常量,索引值范围为1~21。在Class文件格式规范制定之时,设计者将第0项常量空出来是有特殊考虑的,这样做的目的在于满足后面某些指向常量池的索引值的数据在特定情况下需要表达“不引用任何一个常量池项目”的含义,这种情况就可以把索引值置为0来表示。Class文件结构中只有常量池的容量计数是从1开始,对于其他集合类型,包括接口索引集合、字段表集合、方法表集合等的容量计数都与一般习惯相同,是从0开始的。
图 6-3 常量池结构
常量池中主要存放两大类常量:字面量(Literal)和符号引用(Symbolic References)。字面量比较接近于Java语言层面的常量概念,如文本字符串、声明为final的常量值等。而符号引用则属于编译原理方面的概念,包括了下面三类常量:
类和接口的全限定名(Fully Qualified Name)
字段的名称和描述符(Descriptor)
方法的名称和描述符
Java代码在进行Javac编译的时候,并不像C和C++那样有“连接”这一步骤,而是在虚拟机加载Class文件的时候进行动态连接。也就是说,在Class文件中不会保存各个方法、字段的最终内存布局信息,因此这些字段、方法的符号引用不经过运行期转换的话无法得到真正的内存入口地址,也就无法直接被虚拟机使用。当虚拟机运行时,需要从常量池获得对应的符号引用,再在类创建时或运行时解析、翻译到具体的内存地址之中。关于类的创建和动态连接的内容,在下一章介绍虚拟机类加载过程时再进行详细讲解。
常量池中每一项常量都是一个表,在JDK 1.7之前共有11种结构各不相同的表结构数据,在JDK 1.7中为了更好地支持动态语言调用,又额外增加了3种(CONSTANT_MethodHandle_info、CONSTANT_MethodType_info和CONSTANT_InvokeDynamic_info,本章不会涉及这3种新增的类型,在第8章介绍字节码执行和方法调用时,将会详细讲解)。
这14种表都有一个共同的特点,就是表开始的第一位是一个u1类型的标志位(tag,取值见表6-3中标志列),代表当前这个常量属于哪种常量类型。这14种常量类型所代表的具体含义见表6-3。
之所以说常量池是最烦琐的数据,是因为这14种常量类型各自均有自己的结构。回头看看图6-3中常量池的第一项常量,它的标志位(偏移地址:0x0000000A)是0x07,查表6-3的标志列发现这个常量属于CONSTANT_Class_info类型,此类型的常量代表一个类或者接口的符号引用。CONSTANT_Class_info的结构比较简单,见表6-4。
tag是标志位,上面已经讲过了,它用于区分常量类型;name_index是一个索引值,它指向常量池中一个CONSTANT_Utf8_info类型常量,此常量代表了这个类(或者接口)的全限定名,这里name_index值(偏移地址:0x0000000B)为0x0002,也即是指向了常量池中的第二项常量。继续从图6-3中查找第二项常量,它的标志位(地址:0x0000000D)是0x01,查表6-3可知确实是一个CONSTANT_Utf8_info类型的常量。CONSTANT_Utf8_info类型的结构见表6-5。
length值说明了这个UTF-8编码的字符串长度是多少字节,它后面紧跟着的长度为length字节的连续数据是一个使用UTF-8缩略编码表示的字符串。UTF-8缩略编码与普通UTF-8编码的区别是:从'\u0001'到'\u007f'之间的字符(相当于1~127的ASCII码)的缩略编码使用一个字节表示,从'\u0080'到'\u07ff'之间的所有字符的缩略编码用两个字节表示,从'\u0800'到'\uffff'之间的所有字符的缩略编码就按照普通UTF-8编码规则使用三个字节表示。
顺便提一下,由于Class文件中方法、字段等都需要引用CONSTANT_Utf8_info型常量来描述名称,所以CONSTANT_Utf8_info型常量的最大长度也就是Java中方法、字段名的最大长度。而这里的最大长度就是length的最大值,既u2类型能表达的最大值65535。所以Java程序中如果定义了超过64KB英文字符的变量或方法名,将会无法编译。
本例中这个字符串的length值(偏移地址:0x0000000E)为0x001D,也就是长29字节,往后29字节正好都在1~127的ASCII码范围以内,内容为“org/fenixsoft/clazz/TestClass”,有兴趣的读者可以自己逐个字节换算一下,换算结果如图6-4选中的部分所示。
图 6-4 常量池UTF-8字符串结构
到此为止,我们分析了TestClass.class常量池中21个常量中的两个,其余的19个常量都可以通过类似的方法计算出来。为了避免计算过程占用过多的版面,后续的19个常量的计算过程可以借助计算机来帮我们完成。在JDK的bin目录中,Oracle公司已经为我们准备好一个专门用于分析Class文件字节码的工具:javap,代码清单6-2中列出了使用javap工具的-verbose参数输出的TestClass.class文件字节码内容(此清单中省略了常量池以外的信息)。前面我们曾经提到过,Class文件中还有很多数据项都要引用常量池中的常量,所以代码清单6-2中的内容在后续的讲解过程中还要经常使用到。
代码清单6-2 使用Javap命令输出常量表
C:\>javap-verbose TestClass
Compiled from"TestClass.java"
public class org.fenixsoft.clazz.TestClass extends java.lang.Object
SourceFile:"TestClass.java"
minor version:0
major version:50
Constant pool:
const#1=class#2;//org/fenixsoft/clazz/TestClass
const#2=Asciz org/fenixsoft/clazz/TestClass;
const#3=class#4;//java/lang/Object
const#4=Asciz java/lang/Object;
const#5=Asciz m;
const#6=Asciz I;
const#7=Asciz<init>;
const#8=Asciz()V;
const#9=Asciz Code;
const#10=Method#3.#11;//java/lang/Object."<init>":()V
const#11=NameAndType#7:#8;//"<init>":()V
const#12=Asciz LineNumberTable;
const#13=Asciz LocalVariableTable;
const#14=Asciz this;
const#15=Asciz Lorg/fenixsoft/clazz/TestClass;
const#16=Asciz inc;
const#17=Asciz()I;
const#18=Field#1.#19;//org/fenixsoft/clazz/TestClass.m:I
const#19=NameAndType#5:#6;//m:I
const#20=Asciz SourceFile;
const#21=Asciz TestClass.java;
从代码清单6-2中可以看出,计算机已经帮我们把整个常量池的21项常量都计算了出来,并且第1、2项常量的计算结果与我们手工计算的结果一致。仔细看一下会发现,其中有一些常量似乎从来没有在代码中出现过,如“I”、“V”、“<init>”、“LineNumberTable”、“LocalVariableTable”等,这些看起来在代码任何一处都没有出现过的常量是哪里来的呢?
这部分自动生成的常量的确没有在Java代码里面直接出现过,但它们会被后面即将讲到的字段表(field_info)、方法表(method_info)、属性表(attribute_info)引用到,它们会用来描述一些不方便使用“固定字节”进行表达的内容。譬如描述方法的返回值是什么?有几个参数?每个参数的类型是什么?因为Java中的“类”是无穷无尽的,无法通过简单的无符号字节来描述一个方法用到了什么类,因此在描述方法的这些信息时,需要引用常量表中的符号引用进行表达。这部分内容将在后面进一步阐述。最后,笔者将这14种常量项的结构定义总结为表6-6以供读者参考。