多进程

    要让Python程序实现多进程(multiprocessing),我们先了解操作系统的相关知识。

    Unix/Linux操作系统提供了一个 fork() 系统调用,它非常特殊。普通的函数调用,调用一次,返回一次,但是 fork() 调用一次,返回两次,因为操作系统自动把当前进程(称为父进程)复制了一份(称为子进程),然后,分别在父进程和子进程内返回。

    子进程永远返回 0 ,而父进程返回子进程的ID。这样做的理由是,一个父进程可以fork出很多子进程,所以,父进程要记下每个子进程的ID,而子进程只需要调用 getppid() 就可以拿到父进程的ID。

    Python的 os 模块封装了常见的系统调用,其中就包括 fork ,可以在Python程序中轻松创建子进程:

    # multiprocessing.py

    import os



    print 'Process (%s) start…' % os.getpid()

    pid = os.fork()

    if pid==0:

    print 'I am child process (%s) and my parent is %s.' % (os.getpid(), os.getppid())

    else:

    print 'I (%s) just created a child process (%s).' % (os.getpid(), pid)

    运行结果如下:

    Process (876) start…

    I (876) just created a child process (877).

    I am child process (877) and my parent is 876.

    由于Windows没有 fork 调用,上面的代码在Windows上无法运行。由于Mac系统是基于BSD(Unix的一种)内核,所以,在Mac下运行是没有问题的,推荐大家用Mac学Python!

    有了 fork 调用,一个进程在接到新任务时就可以复制出一个子进程来处理新任务,常见的Apache服务器就是由父进程监听端口,每当有新的http请求时,就fork出子进程来处理新的http请求。

    multiprocessing

    如果你打算编写多进程的服务程序,Unix/Linux无疑是正确的选择。由于Windows没有 fork 调用,难道在Windows上无法用Python编写多进程的程序?

    由于Python是跨平台的,自然也应该提供一个跨平台的多进程支持。 multiprocessing 模块就是跨平台版本的多进程模块。

    multiprocessing 模块提供了一个 Process 类来代表一个进程对象,下面的例子演示了启动一个子进程并等待其结束:

    from multiprocessing import Process

    import os



    # 子进程要执行的代码

    def runproc(name):

    print 'Run child process %s (%s)…' % (name, os.getpid())



    if name=='_main
    ':

    print 'Parent process %s.' % os.getpid()

    p = Process(target=run_proc, args=('test',))

    print 'Process will start.'

    p.start()

    p.join()

    print 'Process end.'

    执行结果如下:

    Parent process 928.

    Process will start.

    Run child process test (929)…

    Process end.

    创建子进程时,只需要传入一个执行函数和函数的参数,创建一个 Process 实例,用 start() 方法启动,这样创建进程比 fork() 还要简单。

    join() 方法可以等待子进程结束后再继续往下运行,通常用于进程间的同步。

    Pool

    如果要启动大量的子进程,可以用进程池的方式批量创建子进程:

    from multiprocessing import Pool

    import os, time, random



    def longtimetask(name):

    print 'Run task %s (%s)…' % (name, os.getpid())

    start = time.time()

    time.sleep(random.random() * 3)

    end = time.time()

    print 'Task %s runs %0.2f seconds.' % (name, (end - start))



    if name=='__main
    ':

    print 'Parent process %s.' % os.getpid()

    p = Pool()

    for i in range(5):

    p.apply_async(long_time_task, args=(i,))

    print 'Waiting for all subprocesses done…'

    p.close()

    p.join()

    print 'All subprocesses done.'

    执行结果如下:

    Parent process 669.

    Waiting for all subprocesses done…

    Run task 0 (671)…

    Run task 1 (672)…

    Run task 2 (673)…

    Run task 3 (674)…

    Task 2 runs 0.14 seconds.

    Run task 4 (673)…

    Task 1 runs 0.27 seconds.

    Task 3 runs 0.86 seconds.

    Task 0 runs 1.41 seconds.

    Task 4 runs 1.91 seconds.

    All subprocesses done.

    代码解读:

    Pool 对象调用 join() 方法会等待所有子进程执行完毕,调用 join() 之前必须先调用 close() ,调用 close() 之后就不能继续添加新的 Process 了。

    请注意输出的结果,task 0 1 2 3 是立刻执行的,而task 4 要等待前面某个task完成后才执行,这是因为 Pool 的默认大小在我的电脑上是4,因此,最多同时执行4个进程。这是 Pool 有意设计的限制,并不是操作系统的限制。如果改成:

    p = Pool(5)

    就可以同时跑5个进程。

    由于 Pool 的默认大小是CPU的核数,如果你不幸拥有8核CPU,你要提交至少9个子进程才能看到上面的等待效果。

    进程间通信

    Process 之间肯定是需要通信的,操作系统提供了很多机制来实现进程间的通信。Python的 multiprocessing 模块包装了底层的机制,提供了 Queue Pipes 等多种方式来交换数据。

    我们以 Queue 为例,在父进程中创建两个子进程,一个往 Queue 里写数据,一个从 Queue 里读数据:

    from multiprocessing import Process, Queue

    import os, time, random



    # 写数据进程执行的代码:

    def write(q):

    for value in ['A', 'B', 'C']:

    print 'Put %s to queue…' % value

    q.put(value)

    time.sleep(random.random())



    # 读数据进程执行的代码:

    def read(q):

    while True:

    value = q.get(True)

    print 'Get %s from queue.' % value



    if name=='main':

    # 父进程创建Queue,并传给各个子进程:

    q = Queue()

    pw = Process(target=write, args=(q,))

    pr = Process(target=read, args=(q,))

    # 启动子进程pw,写入:

    pw.start()

    # 启动子进程pr,读取:

    pr.start()

    # 等待pw结束:

    pw.join()

    # pr进程里是死循环,无法等待其结束,只能强行终止:

    pr.terminate()

    运行结果如下:

    Put A to queue…

    Get A from queue.

    Put B to queue…

    Get B from queue.

    Put C to queue…

    Get C from queue.

    在Unix/Linux下, multiprocessing 模块封装了 fork() 调用,使我们不需要关注 fork() 的细节。由于Windows没有 fork 调用,因此, multiprocessing 需要“模拟”出 fork 的效果,父进程所有Python对象都必须通过pickle序列化再传到子进程去,所有,如果 multiprocessing 在Windows下调用失败了,要先考虑是不是pickle失败了。

    小结

    在Unix/Linux下,可以使用 fork() 调用实现多进程。

    要实现跨平台的多进程,可以使用 multiprocessing 模块。

    进程间通信是通过 Queue Pipes 等实现的。