序列化

    在程序运行的过程中,所有的变量都是在内存中,比如,定义一个dict:

    d = dict(name='Bob', age=20, score=88)

    可以随时修改变量,比如把 name 改成 'Bill' ,但是一旦程序结束,变量所占用的内存就被操作系统全部回收。如果没有把修改后的 'Bill' 存储到磁盘上,下次重新运行程序,变量又被初始化为 'Bob'

    我们把变量从内存中变成可存储或传输的过程称之为序列化,在Python中叫pickling,在其他语言中也被称之为serialization,marshalling,flattening等等,都是一个意思。

    序列化之后,就可以把序列化后的内容写入磁盘,或者通过网络传输到别的机器上。

    反过来,把变量内容从序列化的对象重新读到内存里称之为反序列化,即unpickling。

    Python提供了 pickle 模块来实现序列化。

    首先,我们尝试把一个对象序列化并写入文件:

    >>> import pickle

    >>> d = dict(name='Bob', age=20, score=88)

    >>> pickle.dumps(d)

    b'\x80\x03}q\x00(X\x03\x00\x00\x00ageq\x01K\x14X\x05\x00\x00\x00scoreq\x02KXX\x04\x00\x00\x00nameq\x03X\x03\x00\x00\x00Bobq\x04u.'

    pickle.dumps() 方法把任意对象序列化成一个 bytes ,然后,就可以把这个 bytes 写入文件。或者用另一个方法 pickle.dump() 直接把对象序列化后写入一个file-like Object:

    >>> f = open('dump.txt', 'wb')

    >>> pickle.dump(d, f)

    >>> f.close()

    看看写入的 dump.txt 文件,一堆乱七八糟的内容,这些都是Python保存的对象内部信息。

    当我们要把对象从磁盘读到内存时,可以先把内容读到一个 bytes ,然后用 pickle.loads() 方法反序列化出对象,也可以直接用 pickle.load() 方法从一个 file-like Object 中直接反序列化出对象。我们打开另一个Python命令行来反序列化刚才保存的对象:

    >>> f = open('dump.txt', 'rb')

    >>> d = pickle.load(f)

    >>> f.close()

    >>> d

    {'age': 20, 'score': 88, 'name': 'Bob'}

    变量的内容又回来了!

    当然,这个变量和原来的变量是完全不相干的对象,它们只是内容相同而已。

    Pickle的问题和所有其他编程语言特有的序列化问题一样,就是它只能用于Python,并且可能不同版本的Python彼此都不兼容,因此,只能用Pickle保存那些不重要的数据,不能成功地反序列化也没关系。