第1篇 风云篇

    吾写历史,历史爱吾。

    ——温斯顿·丘吉尔[11]

    第1章 第一枪

    圣弗朗西斯科1981

    在杰克·罗森堡(Jack Rosenberg)的圣弗朗西斯科公寓的顶楼里,当最初的小冲突发生时,战争的乌云已集聚了80多年。杰克,又名沃纳·埃哈德(Werner Erhard),是一个宗教教师、一个超级推销员,还有一点儿哄骗行径。在20世纪70年代早期,他只是平凡的杰克·罗森堡,一个“万事通”式的推销员。后来有一天,当他穿过金门大桥时,他顿悟了。他将要拯救世界,并由此可以获得一笔巨额的财富。他所需要的是一个经典的名字和一个新的场所。他的新名字是沃纳(源于沃纳·海森伯)·埃哈德(源于德国政治家路德维希·埃哈德);新的场所是埃哈德研讨会培训中心,简称EST。他确实成功了,虽然没有拯救世界,但至少发财了。成千上万个羞涩的、心神不宁的人,每人花几百美元来到这里,使自己变成高谈阔论且积极主动的人,据说他们在沃纳或他众多门徒举办的激发研讨会中,16个小时不允许去洗手间。这比心理疗法要快速和廉价得多,在某种程度上它是有效的。参加者进去的时候目光还是羞涩和闪烁不定的,出来时就像沃纳一样表现得有自信、坚强和友好。不用再担心他们有时候像狂躁的握手机器人,他们感觉好多了。“训练”的主题居然是伯特·雷诺兹(Burt Reynolds)的一部有趣的、名为《匹夫之勇》的电影。

    EST的狂热追随者围着沃纳。奴隶显然是一个非常强的术语,我们称他们为志愿者。有EST训练的厨师来给他做饭,有司机拉着他四处转,有各种各样的家庭仆人来整理他的公寓。但具有讽刺意义的是,沃纳也是一个狂热的追随者,他是一个物理迷。

    我喜欢沃纳,他聪明、有趣、充满着乐趣。他被物理迷住了,想成为其中的一分子,因此,他耗费了大量的资金将一群出色的理论物理学家带到他的公寓里。有时仅有他的几个特殊的物理伙伴,包括悉尼·科尔曼(Sidney Coleman)、大卫·芬克尔斯坦(David Finkelstein)、迪克·费曼(Dick Feynman)和我,相聚在他家中,享用名厨提供的丰盛晚餐。但更为重要的是,沃纳喜欢举行小型的、精华的会议。圣弗朗西斯科是我们活动的地点,在顶楼装备齐全的研讨会议厅中,有一群志愿者对我们无微不至地照顾,这些小型的会议充满了乐趣。某些物理学家对沃纳产生了怀疑。他们认为沃纳在以某种狡猾的方式,利用他与物理学家的联系来推销自己,但是他从来没有这样做。据我所知,他只是喜欢从知名人士那里了解他们最新的思想而已。

    我想在那里总共举办了三次或四次EST会议,但只有一次给我留下了不可磨灭的印象,进而影响到了我的物理研究。那是1981年,客人中包括默里·盖尔曼(Murray Gell-Mann)、谢尔登·格拉肖(Sheldon Glashow)、弗兰克·维尔切克(Frank Wilczek)、萨瓦斯·迪莫波洛斯(Savas Dimopoulos)、戴夫·芬克尔斯坦(戴夫是大卫的昵称)。但在这个故事当中,最重要的参与者是黑洞战争的三位主要参战者:赫拉德·特霍夫特、史蒂芬·霍金和我。

    虽然在1981年之前我只见过特霍夫特几次,但他给我留下了深刻的印象。所有人都知道他才华横溢,但我感觉到的远不止这些。他似乎有着钢铁般的意志和上乘的智力,超过了我所知道的任何人,或许迪克·费曼除外。他们两个都是表演者:费曼是一个美国表演者,他傲慢、玩世不恭、充满着胜人一筹的男子气。有一次,他给加州理工学院的一群年轻物理学家讲述了研究生和他开的一个玩笑。在帕萨迪纳有个卖三明治的地方,那里供应“名人”三明治。你可以要一个汉弗莱·博加特(Humphrey Bogart)[12]三明治、一个玛丽莲·梦露(Marilyn Monroe)[13]三明治,等等。我想可能是他过生日的时候,学生们把他带到那里,一个接着一个要费曼三明治。他们预先和经理协商过了,柜台后面的小伙子眼睛都没有眨一下。

    当他讲完这个故事后,我说:“噢,迪克,我想知道费曼三明治和萨斯坎德三明治的区别?”

    他回答:“哦,它们几乎相同,只不过萨斯坎德三明治有较多的火腿。”

    我说:“是的,不过胡扯[14]要少得多。”那可能是我在此类游戏中唯一赢他的一次。

    特霍夫特是荷兰人,荷兰人是欧洲最高的人种,但是特霍夫特矮小、结实健壮,长着八字胡,看起来像个市民。与费曼一样,特霍夫特有着强烈的竞争倾向,我确定我永远无法胜过他。与费曼不同的是,他是旧欧洲的产物,是欧洲最新涌现出来的伟大物理学家,是爱因斯坦和玻尔(Niels Bohr)的真正继承者。虽然他比我小6岁,但从1981年开始,我就尊敬他,到现在依然如此。由于在基本粒子标准模型方面的工作,他获得了1999年的诺贝尔物理学奖。

    但在沃纳的顶楼里,让我记忆最深的并不是特霍夫特,而是我在那里第一次遇到了史蒂芬·霍金。霍金在那里投下了炸弹,发动了黑洞战争。

    霍金同样也是一个表演者。他身体瘦小,我猜想他的体重只有100磅(1磅约0.45千克),但这瘦小的身体里蕴含着异常的智力和同等强大的自我。那个时候,霍金用的是一个普通动力的轮椅,他可以用自己的声音说话,然而他的话不好懂,除非你花大量的时间和他在一起。他的随行人员包括一个护士和一个年轻的同事,这个年轻的同事会仔细听他讲,然后重复他说的话。

    在1981年,他的译员是马丁·勒克(Martin Rocek),现在是一个著名的物理学家,是超引力这个重要学科的先驱者。然而,在当时的EST会议上,勒克非常年轻,并不是非常出名。不过通过先前的会议,我了解到他是一个非常有能力的理论物理学家。在我们的交谈中,霍金(通过勒克)说我所考虑的某种东西是错误的。我转向勒克,请他说明一下刚才所谈及的物理内容。他发愣地看着我,像一只在汽车大灯照射下的鹿。事后他告诉我究竟是怎么回事,看来翻译霍金的言语需要如此强烈的专注力,他通常无法了解会议的内容,几乎不知道我们讨论的是什么东西。

    霍金是一个不同寻常的奇观。我不是指他的轮椅或者是他显而易见的生理缺陷。尽管他的面部肌肉不动,但是他那浅浅的微笑是独一无二的,天使与魔鬼般的笑容共存,透射出一丝神秘的乐趣。在EST会议期间,我发现与霍金交谈是极为困难的。他要花很长时间来回答问题,而且他的回答通常十分简短。这些简短的、有时甚至是一个字的回答和他的笑容,还有他超凡的智力令人感到不安。这与特尔斐的先知对话一样[15]。当有人向霍金提出问题时,他的最初反应总是绝对沉默,最终的回答经常是不可思议的。但那会心的微笑表明:“你可能没有理解我说的是什么,但是我知道我是正确的。”

    全世界认为矮小的霍金是一个强大的人,一个有着非凡勇气和毅力的英雄。那些熟悉他的人看到了另一方面:幽默和大胆的霍金。在EST会议期间的一天晚上,我们一群人出去到圣弗朗西斯科著名景点布雷克—勃斯汀小山去散步。霍金开着他的动力椅子和我们一同前往。当我们到达最陡峭路段时,他突然显现出魔鬼般的笑容。他毫不迟疑,以最快的速度冲下山坡,其他人都被他震惊了。我们追赶他,害怕最坏的事情发生。当我们到达山下时,发现他坐在那里笑着。他说他想知道有没有更为陡峭的山坡可以尝试一下。史蒂芬·霍金:物理学的不死天王[16]

    事实上,霍金是一位富有冒险精神的物理学家。但也许他最大胆的行为是他在沃纳顶楼里投下的炸弹。

    我已经不记得他在EST的演讲是如何进行的。如今在霍金的物理研讨会上,他静静地坐在他的椅子上,而由一个预先录音的空洞的计算机声音来演讲。那个计算机化的声音成了霍金的商标;尽管单调,它充满了个性和幽默。那时,是他说后让勒克翻译。无论如何它发生了,炸弹以全力冲向特霍夫特和我。

    霍金声称“信息在黑洞蒸发中丢失”,更为糟糕的是他似乎证明了它。特霍夫特和我意识到如果那是正确的,那么我们这个学科的基础将被破坏了。沃纳顶楼里的其他人如何看待此事呢?就像某动画片中冲出了悬崖的小狼一样:脚下的地面消失了,但它还不知道。

    人们常常说宇宙学家经常犯错但从不怀疑。如果是这样,那么霍金只是半个宇宙学家:从来不怀疑但几乎从不出错。他过去是这样的。不过霍金这次的“错误”是物理学史上最具创新性的一个,它最终能导致关于空间、时间和物质本质的思考模式发生深刻的变革。

    霍金的演讲是那天的最后一个。大约一个小时之后,特霍夫特还站在那里盯着沃纳黑板上的那个图,其他人都已经离去了。我依然能够看到特霍夫特紧皱的眉头和霍金愉悦的笑容。他们几乎什么都没有说,恰似是一个电矩。

    第1篇 风云篇 - 图1

    黑板上画着一个彭罗斯图,它是表示黑洞的一种图。视界(黑洞的边缘)是一条虚线,黑洞中心的奇点是一条看起来有不祥之兆的锯齿线。通过视界指向黑洞内部的线代表穿过视界并落入奇点的少量信息。没有出来的线,按照霍金所讲,那些少量的信息永久地消失了。更为糟糕的是,霍金证明了黑洞最终会蒸发直至完全消失,落入的信息了无踪迹。

    霍金的理论走得更远。他假定真空中充满着不可见的、瞬间起伏不定的“虚”黑洞。他声称这些虚黑洞的作用就是消灭信息,即使邻近没有“实”黑洞。

    在第7章中,你们会精确地了解到“信息”是什么,以及信息丢失意味着什么。暂且相信我的话:这是一个十足的灾难。特霍夫特和我都了解到这一点,但是那天听说此事的其他人的反应是:“讨厌,信息在黑洞中丢失了。”霍金自身是乐观的。对我而言,与霍金相处最为艰难的莫过于他的自鸣得意,不免会产生恼怒的心情。信息丢失不可能是正确的,但是霍金没有看到这一点。

    会议结束了,我们都回各自的家了。霍金和特霍夫特分别回到剑桥大学和乌得勒支大学;我则要在101线上开车南行40分钟回到斯坦福大学。我无法专注于交通。那是正月里寒冷的一天,每当停下或缓慢运行时,我都会在冰冻的挡风玻璃上画沃纳黑板上的图形。

    回到斯坦福后,我把霍金的观点告诉了我的朋友汤姆·班克斯(Tom Banks)。班克斯和我深入地考虑了这个问题。为了了解更多的信息,我甚至邀请霍金的一个校友从南佛罗里达来到斯坦福。我们都非常怀疑霍金的观点,但一时说不出为什么。一个比特的信息丢失在黑洞内部,会糟糕到什么程度呢?我们马上意识到:信息的丢失等同于产生熵,而产生熵意味着产生热量。霍金如此轻松假定的虚黑洞会在真空中产生能量。我们和另外一个同事迈克尔·佩斯金(Michael Peskin)一起,在霍金的理论基础之上做了一个估计。我们发现,如果霍金是正确的,那么真空会在几分之一秒内被加热到百万亿亿亿度。虽然我知道霍金的观点是错误的,但我却无法发现他推理的漏洞,可能这才是令我最为恼怒的地方。

    随后的黑洞战争不仅仅是物理学家之间的争论,它同样是思想的战争,或者更确切地说,是基本原理之间的战争。量子力学的基本原理和广义相对论的基本原理之间,似乎始终相冲突,两者能否共存很不明确。霍金是一个广义相对论学家,他相信爱因斯坦的等效原理。特霍夫特和我是量子物理学家,我们确信不破坏物理学的基础,而违反量子力学的定律是不可能的。在接下来的三章中,我会阐明黑洞、广义相对论和量子力学的基本知识,为叙述黑洞战争做好准备。

    第2章 暗星

    霍雷肖,天地间的奇事很多,远超越你的理性。

    ——威廉·莎士比亚,《哈姆雷特》

    最早发现黑洞那样的东西是在18世纪晚期,当时伟大的法国物理学家皮埃尔·西蒙·德·拉普拉斯(Pierre-Simon de Lapalace)和英格兰的牧师约翰·米歇尔(John Michell)有着同样惊人的想法。那个时代的所有的物理学家都对天文学有着强烈的兴趣。关于天体的所有了解来源于它们发出的光,或者是在月亮和行星的情况下,它们反射的光。在米歇尔和拉普拉斯时代,尽管艾萨克·牛顿(Isaac Newton)已去世半个世纪了,但他在物理学上依然有着最强大的影响力。牛顿坚信光是由微小的粒子组成的,他把它们称为微粒,如果是这样,那么没有理由认为,光会不受重力的影响。拉普拉斯和米歇尔想知道:是否存在一种大质量、大密度的恒星,以至于光无法逃离它们的万有引力。如果存在这样的恒星,那么它们不是全黑以至于不可见的吗?

    诸如一块石头、一颗子弹,甚至是一个基本粒子,这样的抛射体[17]能逃脱出地球的引力吗?从某种意义上来说它能,从另一种意义上来说又不可能。一个有质量物体的引力场永远不会终止,它永远延续着,并随着距离的增加越来越弱。例如,一个抛射体永远无法彻底逃脱地球的引力。但是,如果以极大的速度向上快速扔出一个抛射体,那么它将永远持续它向外的运动,减弱的引力太弱,无法使其回头并回到地面。这就是抛射体逃脱地球引力的本意。

    最强壮的人也无法将一块石头扔向太空。专业的棒球投手垂直向上抛可能会达到75码(1码约为0.9米),这大约是帝国大厦1/4的高度。在忽略空气阻力的情况下,手枪向上发射的子弹大约能达到3英里的高度。存在一个特定的速度,恰好足够发射一个物体到一个永久的外轨道,该速度被称为逃逸速度。当射出的速度小于逃逸速度时,抛射体会落回地面。当射出的速度大于逃逸速度时,抛射体会逃离到无穷远处。地球表面的逃逸速度极大,为每小时25 000英里。[18]

    对于这里的讨论,我们称所有大质量的天体为恒星,无论它是行星,或者小行星,还是真实的恒星。那么地球恰好是一个小的恒星,月球是一个更小的恒星,诸如此类。依据牛顿定律,一个星体的引力效果正比于它的质量,因此星体的逃逸速度也极为自然地正比于它的质量。然而质量仅仅是决定要素之一,另一要素与星体的半径有关。想象你站在地球的表面,某种力使得地球的尺寸变小,但它的质量保持不变。如果你正站在地球表面,吸引力会使你与地球之间和地球各个原子之间变近。由于你趋近地球的中心,地心引力的影响会变得更为强大。正如你想象的那样,你自身的质量作为地心引力的函数,也会增加,逃离地球的拉力会更为困难。这显示了一条基本的物理规则:压缩星体(不减少它的质量)会增加其逃逸速度。

    现在考虑完全相反的情形。出于某种原因,地球的尺寸扩张了,因此你离地心远了。表面的地心引力将会变弱,因此变得容易逃离。米歇尔和拉普拉斯提出的问题是:是否存在一个有着如此大的质量和如此小的半径星体,以至于它的逃逸速度大于光速。

    当米歇尔和拉普拉斯首先提出这个预言性的想法时,光速(用c来表示)已为人类所知达100年之久。丹麦天文学家奥勒·罗默(Ole Rφmer)在1676年就确定了c的值,发现光以惊人快的速度传播,为每秒186 000英里(或绕地球运行7周)[19]

    c=186 000英里/秒

    第1篇 风云篇 - 图2

    光有如此大的速度,因此需要非常大的或者极度收缩的质量才能捕获光,但是没有任何明显的原因阻止这样的事情发生。米歇尔向皇家学会递交的论文是后来被约翰·惠勒称之为黑洞的物体的第一篇参考文献。

    当你知道引力与其他力相比是非常弱的时候,你可能会为此事而感到吃惊。起重机工作人员和跳高运动员可能感到引力不小,但一个简单的实验会展示出引力是多么的微弱。首先考虑一个轻的物体:一个由泡沫聚苯乙烯制成的小球是很合适的。通过这样或那样的方法,例如用你的衬衫摩擦物体,就可以让它带上静电。现在用细线将它悬挂在天花板上,当它停止摆动时,细线处于竖直位置。接下来,让另外一个带相同电的物体靠近它。静电会推开悬挂的物体,使细线张开一定的角度。

    如果悬挂的物体是一个铁制品,那么用磁铁可以得到和上面相同的结果。

    第1篇 风云篇 - 图3

    现在去除电荷和磁铁,让一个质量非常大的物体靠近轻小物体,来使它偏离。重物体的引力作用在悬挂物体上,但是这个效应太小以至于无法观测。与电磁力相比,引力是非常微弱的。

    第1篇 风云篇 - 图4

    但是,既然引力如此微弱,为什么我们无法跳到月球上去呢?答案在于地球有巨大的质量,约为6×1024千克,这轻而易举地弥补了引力的微弱。然而即便有如此大的质量,地球表面的逃逸速度依然小于光速的千分之一。为了使逃逸速度大于光速c,米歇尔和拉普拉斯所想象的暗星必须是非常重和极度被压缩的。

    为了使你能够体验所涉及的强度,我们来看看几种天体的逃逸速度。逃离地球表面的初始速度大约是每秒8英里(大约等于11千米),即大约每小时25 000英里。就地面的标准而言,这个速度是很快的,但与光的速度相比,就显得非常慢了。

    与逃离地球相比,你有更好的机会逃离小行星。半径为1英里的小行星的逃逸速度大约是轻易能达到的每秒6英尺(2米)。相比之下,无论是半径还是质量[20],太阳都比地球大得多。这两者的效应是相反的。质量越大,逃离太阳表面越困难,而半径大了逃离反而容易。然而质量取胜了,太阳表面的逃逸速度比地球表面的逃逸速度大50倍左右,但依然比光速慢得多。

    然而,太阳注定不能永远保持相同的尺寸。当恒星的燃料消耗殆尽时,由内热产生的向外的压力消失。引力就像一个巨大的钳子一样,使恒星坍缩为它原有尺寸的一小部分。大约50亿年之后,太阳将会枯竭,坍缩成所谓的白矮星,它的半径和地球半径相当。从它的表面逃离需要的速度为每秒4000英里,快极了,但依然只是光速的2%。

    如果太阳再重一些,即大约是现在质量的1.5倍,那么增加的质量会刚好把它挤压过白矮星阶段。恒星内的电子会被挤压到质子里面,形成一个稠密得难以想象的中子球。中子星是如此的密集,以至于单单一茶匙中子球的质量就超过了10万亿磅。但是,中子星还不是暗星,它表面的逃逸速度接近光速(大约是光速的80%),但还不是光速。

    如果坍缩的恒星更重的话,即达到太阳质量的5倍,那么即便是密集的中子星也无法承受向内的引力。它最终会坍缩到一个奇点,一个密度为无穷大、有着毁坏性力量的点。这个微小的核的逃逸速度,远远大于光速。暗星,也就是我们今天称之为黑洞的东西,由此而诞生了。

    爱因斯坦非常不喜欢黑洞的观点,以至于他忽视了它存在的可能性,宣称黑洞是无法形成的。但是,无论爱因斯坦的喜与恶,黑洞是真实存在的。如今,天文学家们不仅研究单个坍缩的恒星,而且也涉及星系群的中心,在那里成千上万甚至是数以亿计的恒星,转化成巨大的黑色怪物。

    第1篇 风云篇 - 图5

    太阳不够重,无法压缩自己来形成黑洞,但如果我们用宇宙钳将它夹紧,使它的半径恰好压缩到2英里,它就变成一个黑洞。你可能会认为,如果钳子的压力变小,它的半径会弹回到5英里。不过为时已晚,组成太阳的材料会进入一种自由落体的状态。太阳表面会快速地经历1英里点、1英尺点和1英寸点(1英尺约为30厘米,1英寸约为2.5厘米)。这在形成奇点之前是不会停下来的,而且这种可怕的坍缩是不可逆转的。

    想象你发现自己在一个黑洞附近,但是离奇点尚有一段距离。从那里发出的光能逃离黑洞吗?答案依赖于黑洞的质量和光开始其旅程的精确起点。一个称之为视界的假想球面将宇宙分为两部分。从视界内发出的光不可避免地被拉回黑洞,而从视界外发出的光能逃脱黑洞的引力。如果太阳变成了黑洞,视界的半径大约是2英里。

    第1篇 风云篇 - 图6

    视界的半径称为史瓦西半径。这是为了纪念天文学家卡尔·史瓦西(Karl Schwarzschild)而取的名字,他是第一个研究黑洞数学理论的人。史瓦西半径依赖于黑洞的质量;事实上,它直接正比于黑洞的质量。例如,如果太阳的质量变为现在的1000倍,离它2英里或3英里处发出的光就没有任何机会逃离,因为视界的半径增加了1000倍,达到了2000英里。

    质量和史瓦西半径之间成正比是物理学家获知黑洞的第一个事实。地球的质量大约是太阳的百万分之一,因此它的史瓦西半径是太阳的百万分之一。只有把它挤压到越橘大小的时候才能形成暗星。相比之下,有一个超大尺寸的黑洞,潜藏在银河系中心,它的史瓦西半径大约是1000万英里,与地球环绕太阳的轨道大小相当。在宇宙的某一个小区域,甚至存在比这个黑洞更大的庞然大物。

    没有任何地方比黑洞的奇点更为危险,任何事物都无法在它无限强大的力量下存活。爱因斯坦对奇点的想法感到惊恐不安,因此他抵制它的存在。但是我们只能接受它,如果足够多的质量堆积在一起,任何事物都无法对抗向心的巨大拉力。

    潮汐和身高2000英里的人

    大海每天就像是呼吸了两次一样,那么是什么引起大海的起伏呢?当然是月球,但它是怎样做到的呢?为什么每天两次呢?在我解释之前,首先让我向你们讲述一个关于身高2000英里的人的降落故事。

    第1篇 风云篇 - 图7

    想象身高2000英里的人,即一个从他的头顶到脚底高2000英里的巨人,当他从外太空落向地球时,脚先着地。在外太空遥远的某处,引力太弱以至于他没有什么感觉。但是当他接近地球时,他长长的身体会产生强烈的感觉,不是下落的感觉而是被拉伸的感觉。

    问题不在于这个巨人朝向地球的整体加速度,引起他感觉不适的原因,是因为引力在空间上的不均匀性。在远离地球的地方,引力几乎完全不存在。但是当他靠近地球时,由引力产生的拉力增加了。这个可怜的人太高了,以至于他的脚部受到的拉力要比他的头部受到的拉力大得多,净效应就是产生了难受的感觉,他的头部和脚部正在被朝相反的方向拉伸。

    如果水平下落的话,他可能会避免被拉伸,因为头和脚处在同样的高度。然而当这个巨人这样做时,他感觉到了新的一种不适,一种被挤压的感觉代替了拉伸的感觉。他感觉自己的头部好像正在被压向脚部。

    为了理解为什么会这样,我们暂时把地球想象成平坦的。下面就是它的样子:

    第1篇 风云篇 - 图8

    图中带箭头的竖直线代表引力的方向,一律竖直向下,而且引力的强度是完全均匀的。在这样一种设定下,无论身高2000英里的人是竖直落下还是水平落下,都不会有任何麻烦,至少在他撞到地面之前不会遇到麻烦。

    但是,地球不是平坦的,因而引力的强度和方向都是变化的。引力不是指向一个方向,而是直接指向球体的中心。

    第1篇 风云篇 - 图9

    如果巨人水平下落时,就会产生新的问题。因为地心引力将他拉向地球中心,因此他的头部和脚部受到的力不同,导致了被压缩的奇怪感觉。

    第1篇 风云篇 - 图10

    我们回到大海的潮汐问题。海水每天两次的涨落的原因,与2000英里高的人在下降中所感到不适的原因,是完全相同的:引力的不均匀性。但是在潮汐问题上,不是地球的,而是月球的引力起作用。正对月球的大海,受到它的引力最强,背对月球的那部分大海最弱。你如果认为月球仅引起靠近它的海洋的膨胀,那么你就错了。在下落中,巨人的头部被拉伸而远离他的脚部,出于同样的原因,地球两侧无论是面对,还是背向月球的水,都会膨胀而离开地球。有一种方法可以想象,地球上靠近月球那面的水由于月球的吸引而偏离地球,但是在远离月球的那边,月球吸引地球而偏离那部分水。结果地球上两边的水都会膨胀,一边朝向月球,一边背离月球。当地球在膨胀的水下回转时,每一点都经历两次潮汐。

    第1篇 风云篇 - 图11

    由引力的强度和方向变化而引起的扭转力统称为潮汐力,无论它们是由于月球、地球、太阳,还是其他天体引起的。当身高正常的人从跳水板上跳下时,他们能感受到潮汐力吗?不能,我们是不能感受到的,但这仅仅是因为我们的尺寸太小,以至于地球的引力场,在我们身体尺度上几乎不发生变化。

    坠入地狱

    我走上渺无人烟的神秘之路。

    ——但丁《神曲》

    当你掉向一个具有太阳质量的黑洞时,潮汐力不会如此仁慈。紧密收缩在黑洞微小的体积内的质量不仅使视界附近的引力非常强大,而且变得非常不均匀。在你到达史瓦西半径之前,当距离黑洞不超过100 000英里处时,潮汐力就会使你感觉极为不适。对黑洞周围快速变化的引力场而言,你就如同身高2000英里的巨人一样大。当接近视界时,你会变形,几乎类似于从管子里挤出的牙膏。

    有两种方法可以消除黑洞视界处的潮汐力的影响:或者让你自己变小些,或者让黑洞变大些。细菌在一个具有太阳质量的黑洞的视界处是不会感受到潮汐力的,而你在具有100万倍太阳质量的黑洞的视界处同样如此。这似乎有点儿违反直觉,因为质量大的黑洞周围的引力作用会更强些。但是,这种思维方式忽略了一个重要的事实:质量大的黑洞的视界是如此之大,以至于它几乎是平坦的。在黑洞视界附近,引力场非常强却几乎是均匀的。

    如果你对牛顿的引力理论略有所知,你就可以计算出一个暗星视界处的潮汐力。你会发现,暗星半径和质量越大,视界处的潮汐力就越弱。因此,穿过一个非常大的黑洞的视界是平安无事的。然而不幸的是,你依然无法逃脱潮汐力的魔爪,甚至对于最大的黑洞也是如此。大的尺寸仅仅延缓了这种必然,最终会无可奈何地落向奇点,正如但丁(Dante)所想象的折磨那样可怕,托克马达(Torquemada)在西班牙宗教法庭所遭受的苦难,毁灭的情形浮现在我的脑海中。即使最小的细菌在垂直轴上也会被分裂,水平方向上被挤扁。小的分子会比细菌存活的时间长些,原子会存活得更长些。但是,甚至对于单个质子而言,奇点迟早会占到上风。我不知道但丁关于任何犯罪的人,都无法逃脱地狱的痛苦折磨的言论是否正确,但是我非常确定任何事物,都无法逃离黑洞奇点处可怕的潮汐力。

    我们已知道被拉入奇点的物体如同坠入地狱,这当然不是什么好事。尽管奇点有着不仅奇异而且残忍的性质,但仍然不是黑洞最神秘之处。无论如何,奇点至少不像视界那样似是而非。当物质穿过视界时会发生什么呢?现代物理学中几乎没有比这个问题更为混乱的答案了。无论你怎样回答,都可能是错的。

    米歇尔和拉普拉斯的时代远远早于爱因斯坦的时代,因此无法预料到他在1905年作出的两大发现。第一个发现是狭义相对论,它所基于的原理是:包括光在内,任何事物都永远无法超过光速。米歇尔和拉普拉斯知道光不会逃逸出暗星,但是他们没有意识到其他事物更加不能逃逸。

    爱因斯坦在1905年的另一个发现是:光实际上是由粒子组成的。在米歇尔和拉普拉斯猜想出暗星不久,牛顿关于光的微粒说就失宠了。事实证明光是由波组成的,类似于声波或是大洋表面的波。直到1865年,詹姆斯·克拉克·麦克斯韦(James Clerk Maxwell)领会到光是由波动的电场和磁场组成的,在空间以光速传播,光的微粒说寿终正寝了。似乎没有人会想到电磁波仍然可能被引力吸引,因此暗星被遗忘了。

    暗星就这样被忘却了,一直到1917年,当天文学家卡尔·史瓦西求解爱因斯坦新制的广义相对论方程,并重新发现暗星[21]为止。

    等效原理

    如同爱因斯坦的许多其他工作一样,广义相对论是复杂和微妙的,但它是由极为简单的观测事实而来的。事实上,它们是如此的基本,以至于任何人都能做,而想不到做。

    爱因斯坦的风格是从最为简单的思想实验中得出意义极为深远的结论。就我个人而言,我始终仰慕这种思维方式。在广义相对论的情形下,思想实验涉及电梯中的一个观测者。教科书上经常把电梯修改为飞船,但是在爱因斯坦的时代,电梯是令人为之激动的高科技。他首先想象电梯在宇宙空间中自由飘浮,远离任何引力源。

    第1篇 风云篇 - 图12

    电梯中的任何人都能体验到完全失重的感觉,抛射体会做完美的匀速直线运动,光线也完全以相同的方式运动,不过当然是以光速了。

    可以采用绳索将电梯固定到某个遥远的支撑物上,或者将它拴在火箭的下面。爱因斯坦接下来想象:如果电梯向上加速将会发生什么呢?乘客会被推向电梯的底板,抛射体的轨道也会向下弯曲,呈现为抛物线。这所有的一切和他们在引力影响下的情形完全相同。自伽利略之后,人们都了解这一点,但直到爱因斯坦才把这个简单的事实变成一个崭新的、强有力的物理学原理。等效原理假设引力效应和加速效应完全没有任何差异。电梯中的任何实验都无法区分出电梯是静止在引力场中,还是正在宇宙空间中加速。

    就其自身而言,这并不奇怪,但结果是重要的。当爱因斯坦发表等效原理时,关于引力对其他现象的影响知之甚少,这些现象包括电流、磁铁的行为,以及光的传播,等等。爱因斯坦首次计算出引力如何影响这些现象,这通常不涉及任何新的或是未知的物理。他需要做的是,想象在加速的电梯中,观测这些已知现象时会有怎样的结果。于是,等效原理将告诉他引力的效应。

    第一个例子涉及光在引力场中的行为。想象一束光在电梯中从左到右做水平运动。如果电梯在远离引力源处自由移动,那么光将沿着一条完美的、水平的直线运动。

    第1篇 风云篇 - 图13

    现在让电梯向上加速。从电梯左侧发出的光是水平运动的,但是由于电梯的加速运动,当它到达另一侧时,它表现为有一个向下分量的运动。就某种观点而言,电梯在向上加速,但是在电梯中的乘客看来,光表现为向下加速。

    第1篇 风云篇 - 图14

    事实上,光线路径的弯曲类似于一个极快速运动的粒子的轨道。这个效应与光是由粒子还是波组成无关,它仅仅是向上加速运动的效应。除此之外,爱因斯坦论证道:如果加速能引起光线轨道的弯曲,那么引力一定也可以。事实上,你可能认为是引力吸引光而引起它下落,这正是米歇尔和拉普拉斯所猜想的情况。

    事情的另一面是:如果加速运动可以模拟引力效应,那么它同样也能消除引力效应。想象电梯不再是处于宇宙空间中的无限远处,而是在一座摩天大楼的顶部。如果电梯处于静止状态,那么电梯中的乘客将体验到引力的全部效应,包括光线穿过电梯时的弯曲效应。但是随后,电梯的吊索断了,它开始加速落向地面。在短暂的自由下落过程中,电梯中的引力表现为完全消失了。[22]乘客悬浮在电梯舱中,丝毫感觉不到是向上还是向下运动。粒子和光线在其中沿着完美的直线运行。这是等效原理的另一方面。

    排水孔、哑洞和黑洞

    任何不用数学公式而试图阐明现代物理学的人,都会了解到类比是多么的有用。例如,把原子想象成一个微型太阳系是十分有益的;同样,对于还没有准备好投入到广义相对论的艰深数学中的某些人而言,用通常的牛顿力学来描述暗星是有所帮助的。但是,类比有它们自身的局限性,如果用严格的标准来说,黑洞的暗星类比是有缺陷的。存在另外一个更为合适的类比,我是从比尔·温鲁(Bill Unruh)那里了解到的,他是黑洞量子力学的先驱者之一。我如此喜欢它的原因,可能起源于我的第一份工作——钳管工。

    想象一个浅的、无限大的湖,它只有几英里深,但是在水平方向上无限延伸。一种全盲的蝌蚪生存在这个湖中,它们对光一无所知,但是非常善于利用声音来确定物体的位置和进行交流。这里存在着一条铁定的法则:在水中没有什么比声速传播得更快。对大多数场合而言,由于蝌蚪的移动速度慢于声速,因此速度的极限并不重要。

    此湖中有一个危险的地方。许多蝌蚪一旦发现这一危险,就为时已晚,永远无法回去说出这个秘密。湖中心有一个排水孔,湖中的水通过这个孔流到下面的洞穴中,水流将在那里形成瀑布落向锋利而致命的岩石。

    第1篇 风云篇 - 图15

    如果从上往下看此湖,你会发现湖中的水流向排水孔。在远离孔的地方,水速很慢,以至于难以测量,但在靠近孔处,水流开始加速。我们假设这个孔排水很快,以至于在距离中心某处水速等于声速。距离孔更近的地方,水流是超过声速的。现在,我们构造了一个非常危险的排水孔。

    蝌蚪在水中悬浮着,体验着它们自己唯一的液体环境,它们永远无法知道自己运动得有多快;它们邻近的一切事物都以相同的速度被冲走。大的危险是它们可能被吸进孔中去,然后在锋利的岩石上丧命。事实上,向内的速度超过声速有一个边界,一旦它们当中的某一个穿过此处,就注定要被毁灭了。穿过一去不复返点之后,蝌蚪再也不能逆流而上,也不能给安全区域中的同类发出警告(因为水中传播的可听信号都比声速慢)。温鲁把排水孔和一去不复返点称为哑洞,哑的意思是安静无声,因为声音不能从中逃逸出来。

    当一个粗心的观测者漂过它时,起初是无法发现任何不同寻常之处的,这是关于一去不复返点最有趣的事情。没有路标和警报器来警告它,也没有障碍物来阻止它,甚至没有任何东西来通知它即将突如其来的危险。此时此刻一切都平安无事,接下来的时刻仍然如此。经过一去不复返点是令人乏味的。

    一只自由漂浮的蝌蚪,我们称她为爱丽丝(Alice),她一边给远处的朋友鲍勃(Bob)唱歌,一边漂向排水孔。如同其他看不见的蝌蚪同伴一样,爱丽丝只有非常有限的演唱节目。她所能唱的音符仅仅是中央C,它的频率是每秒262周,或者用专业术语来讲,是262赫兹(Hz)[23]。当爱丽丝还远离排水孔时,她的运动几乎是无法感知的。鲍勃聆听着爱丽丝的声音,他听到了中央C。但是当爱丽丝加速时,她的声音开始变得深沉,至少鲍勃听着是这样;中央C变到了B,然后是A。原因在于我们熟知的多普勒频移,这在当一个加速的火车鸣笛时可以听到。当火车靠近时,对你而言,鸣笛声比火车上乘务员听到的音调高。接着,当鸣笛声退离到某处时,又变得深沉。这时每相邻的振动要比前一次传播的稍远些,当你听到它时有微小的延后。相邻的声音振动的时间被拖长,因此你听到了较为低的频率。如果火车加速远离,那么所谓的频率会变得越来越低。

    爱丽丝所唱的音符在漂向一去不复返点时发生了同样的事情。起初,鲍勃听到的音符的频率是262赫。稍后它转移到了200赫,接着是100赫,50赫,等等。在极为靠近一去不复返点处发出的声音要经过非常长的时间才能逃逸出来;水的运动速度几乎抵消了声音向外传播的速度,几乎让它停了下来。不久之后,爱丽丝的声音变得如此低沉,以至于没有特殊的装置,鲍勃就不能再听到她的声音。

    鲍勃可能有某种特殊的装置来收取声波,于是他得到了爱丽丝接近一去不复返点时的信号。但是,随后的声波需要更长的时间才能抵达鲍勃,因此使得关于爱丽丝的所有一切都慢下来了。不仅她的声音变得深沉,而且她挥动的手也几乎停止了。鲍勃探测到的最后一个波,似乎需要无穷长的时间。事实上,当爱丽丝到达一去不复返点时,鲍勃永远无法接收到她的声波了。

    然而在此同时,爱丽丝没有注意到任何异样。她幸运地漂过一去不复返点,丝毫没有感觉到任何减速或加速。只是在不久之后,当她被冲向致命的岩石时,她才意识到危险。这里我们发现黑洞的关键特点之一:关于同一事件,不同观测者的看法表面上相矛盾。对鲍勃而言,至少通过他所听到的声音来判断,爱丽丝需要无限长的时间才能到达一去不复返点,但对爱丽丝来说,可能不过一眨眼的工夫就到了。

    到目前为止,你可能猜想一去不复返点是黑洞视界的一个类比。如果用光来代替声音(记住没有什么能超过光速),那么你就对史瓦西黑洞的性质有了一个相当精确的图景。在排水孔的情形下,经过视界处的任何事物都无法逃离出去,甚至不能保持不动。在黑洞中,危险不再是锋利的岩石,而是中心处的奇点。视界内的任何事物都会被拉向奇点,它们在那里被挤压成有着无限压力和密度的物质。

    有了哑洞这个类比作为我们的装备,与黑洞有关的许多似非而是的事情就变得明确了。例如,设想鲍勃现在不再是一只蝌蚪,而是空间站的一名宇航员,他在一个安全的距离内环绕黑洞运行。与此同时,爱丽丝正落向视界,她不是在唱歌,因为宇宙空间中没有空气来传播她的声音;相反,她用一个能发出蓝光的手电筒来向外发射信号。当她下落时,鲍勃发现光的频率由蓝光变为红光,然后越过红外到微波,最终到低频率的无限电波。爱丽丝感到自己越来越呆滞,几乎静止了。鲍勃永远无法看到她穿过视界;对他而言,爱丽丝需要无限长的时间才能到达一去不复返点。但是在爱丽丝自身的参考系中,她正好穿过了视界,仅当她接近奇点时才开始感到有点儿异样。

    史瓦西黑洞的视界在史瓦西半径处。当爱丽丝穿过视界时,她的末日将要来临了,但是就像蝌蚪一样,在被奇点毁灭前,她依然有些时间。究竟是多少时间呢?这依赖于黑洞的大小和质量。质量越大,史瓦西半径越大,爱丽丝存活的时间越长。对太阳质量般大的黑洞而言,爱丽丝大约只有10微秒的时间。位于我们星系中心处的黑洞,它的质量可能是太阳的10亿倍,爱丽丝将有10亿微秒,即大约半小时。你甚至可以想象更大的黑洞,爱丽丝在那里可终其一生,甚至她的子孙后代可能在那里生存、死亡,当然是在奇点毁灭他们之前。

    当然,依据鲍勃的观测,爱丽丝永远无法到达视界处。那么谁是正确的呢?她是到达还是没有到达视界处呢?真正发生了什么呢?究竟在哪里呢?总之,物理是一门观测和实验科学,因此我们必须信任鲍勃的观测结果,尽管它们表面上与爱丽丝对事件的描述相矛盾,但是有着自身的有效性。(在后面的章节中,在讨论了由雅各比·贝肯斯坦和史蒂芬·霍金发现的有关黑洞的令人惊异的量子性质之后,我们将重新回到爱丽丝和鲍勃。)

    就大多数场合而言,排水孔是个好的类比,但是如同其他类比一样,它也有自身的局限性。例如,当一个物体落向视界时,它的质量使得黑洞的质量增大。质量的增大意味着视界的增加。毫无疑问,在排水孔这个类比中,我们可以连接一个泵,来控制水流。每当有东西落进孔中时,泵就会打开一点儿,从而加速水流,并将一去不复返点向远处延伸。但是这个模型就此而失去了它的简洁性。[24]

    黑洞的另一个性质是:它们自身是可移动的物体。如果将黑洞放在另一个物体的引力场中,就如同其他任何有质量的物体一样,它会被加速。它甚至可能落入一个更大的黑洞之中。如果我们试图描述真实黑洞的所有特性,那么排水孔类比就会比它想避免的数学还要复杂。但尽管有这些局限,排水孔是一个极为有用的图景,它使我们不需要精通广义相对论的方程,而理解黑洞的基本特征。

    为喜欢公式者准备的一些公式

    我这本书的写作宗旨是为倾向于不用数学的读者准备的,但是对那些喜爱一点儿数学的读者,这里给出了一些数学公式以及它们的意义。如果你不喜欢它们,直接跳到下一章去阅读就行了。我们这里不必通过测试。

    根据牛顿的引力定律,宇宙中的任何物体之间的作用是相互吸引的,引力正比于它们质量的乘积,反比于它们之间距离的平方。

    第1篇 风云篇 - 图16

    这是物理学中最著名的方程之一,几乎和E=mc2(爱因斯坦著名的方程,它联系着能量E、质量m和光速c)一样有名。方程左边是两物体之间的力F,例如月球和地球,或者是地球与太阳之间的力。方程右边是大的质量M和小的质量m。比如说,地球的质量是6×1024千克,月球的质量是7×1022千克。两物体间的距离用D来标记,从地球到月球间的距离大约是4×108米。

    方程中的符号G是数值常数,称为牛顿常数。我们不能通过纯数学的推导来得到牛顿常数。为了得到它的值,必须测定两个已知质量的物体之间的引力。一旦你这样做了,你可以计算出相距任意距离的任何两个物体之间的引力。具有讽刺意义的是,牛顿从来不知道他自己的这个常数的值。由于引力非常弱,因此G太小,以至于直到18世纪末才测量出它的值。那时,英格兰物理学家亨利·卡文迪许(Henry Cavendish)设计了一种巧妙的方法,用来测量非常小的力。卡文迪许发现,相距为1米的一对质量为1千克的物体之间的力大约是6.7×10-11牛顿。(在公制单位中,牛顿是力的单位,它大约等于1/5磅。)因此在公制单位下,牛顿常数的值为:

    G=6.7×10-11

    牛顿得到了他理论中的一个幸运的突破:有关平方反比定律的特殊数学性质。当你称自己的体重时,把你拉向地球中心的引力一部分是由你脚底下的质量产生的,一部分是来自于地球内部的质量,还有一部分产生于8000英里远的对径点。然而由于数学的神奇魔力,你可以假设全部的质量都集中于一点,它恰好在行星的几何中心。

    第1篇 风云篇 - 图17

    一个球体与质量全部集中于中心点时产生的引力精确相同

    由于这个便利的事实,牛顿用一个微小的质点来代替大的质量,从而计算出大物体的逃逸速度。下面是结果:

    第1篇 风云篇 - 图18

    这个公式清楚地表明:质量越大,半径R越小,逃逸速度越大。

    现在计算史瓦西半径RS就成为一个简单的练习了。你仅需要把光速代替逃逸速度,然后求解方程得出半径即可。

    第1篇 风云篇 - 图19

    注意一个重要的事实:史瓦西半径正比于质量。

    关于暗星,要说的就这么多了,至少在这种程度上拉普拉斯和米歇尔能够理解它们。

    第3章 非欧几何

    在过去,诸如高斯(Gauss)、玻利亚(Bolyai)、罗巴切夫斯基(Lobachevski)和黎曼(Riemann)[25]那些数学家之前,几何学是指欧几里得几何学,这和我们在中学所学习的几何学是一样的。首先是平面几何学,它是有关于极为平坦的二维面的几何学。基本的概念是点、直线和角度。我们了解到:不在同一条直线上的三点确定一个三角形;平行线永不相交;任意三角形的内角和是180°。

    第1篇 风云篇 - 图20

    如果你在此之后和我学过的课程相同,那么你就展开了形象化的力量,即到了三维空间。三维空间中的某些情况和二维空间保持一致,但是其他一些情况必须要改变,否则三维空间和二维空间将没有任何差异。例如,三维空间中的直线可以不相交,然而它们并不平行;我们称它们为异面直线。

    第1篇 风云篇 - 图21

    无论是在三维还是二维情况下,几何学的规则保持不变,这大约是欧几里得在公元前300年左右定下来的。然而,即使在二维情况下,其他种类的几何学是可能的,它们有着不同的公理。

    几何这个词字面上的意思是“测量地球”。具有讽刺意义的是,如果欧几里得真的不辞辛苦地去测量地球表面上的三角形,他会发现欧几里得几何学是不能用的。原因在于地球表面是球面,[26]而不是平面。球面几何学中当然有点和角度,但是我们称之为直线的东西并不显然存在。首先让我们试图来弄明白“球面上的直线”究竟是什么意思。

    在欧几里得几何学中,描述直线的一种熟知的方法是:它是两点之间的最短路线。如果我想在足球场上建立一条直线,首先我会在地上钉两个木桩,然后用一条尽可能紧的线把它们连接起来。把线拉得足够紧是为了保证距离尽可能短。

    第1篇 风云篇 - 图22

    两点之间最短路线的概念可以极为方便地推广到球面。设想我们的目的,是寻找莫斯科和里约热内卢之间的最短航线。我们需要一个地球仪、两个图钉以及一些线。我们分别用两个图钉来标记莫斯科和里约热内卢,并在地球仪表面上拉伸线段来确定最短路线。这些最短路线称为大圆,例如赤道和子午线。将它们称为球面几何学中的直线是合理的吗?事实上,我们将它们叫做什么并不重要,要紧的是点、角度和直线之间的逻辑关系。

    从某种意义上来说,作为两点之间的最短路线的这些线是球面上最直的线了。这些路线的正确数学术语是测地线。平面上的测地线显然就是通常的直线,而球面上的测地线是大圆。

    第1篇 风云篇 - 图23

    球面上的大圆

    有了这些球面的替代物,我们就可以建立三角形了。在球面上选三个点,分别为莫斯科、里约热内卢和悉尼。接下来,分别画出两点间的三条测地线:莫斯科—里约热内卢测地线,里约热内卢—悉尼测地线,以及悉尼—莫斯科测地线。结果我们得到了一个球面三角形。

    第1篇 风云篇 - 图24

    球面三角形

    在平面几何学中,将任意三角形的角度相加,我们得到了精确的180°。但是当仔细观察球面三角形时会发现,由于边向外凸出,使得角度比平面上的要大些。结果是球面三角形的角度之和总是大于180°。如果曲面上的三角形具有这个性质,我们就称曲面是正弯曲的。

    那么存在具有相反性质(即三角形的内角和小于180°)的曲面吗?答案是肯定的,此类曲面的一个例子是马鞍面,它是负弯曲的。负弯曲曲面上的测地线形成的三角形向内陷,而不是向外凸。

    因此,无论我们有限的大脑能否想象出三维弯曲空间,我们的确知道如何在实验上测出曲率,三角形正是答案所在。在空间选三点,将线拉得尽可能地紧,形成一个三维的三角形。如果对于任意的三角形的内角之和,都等于180°,那么空间是平坦的。反之,空间是弯曲的。

    第1篇 风云篇 - 图25

    比球面和马鞍面还要复杂得多的曲面是可以存在的,具有不规则起伏的区域既有正曲率又有负曲率,然而建立测地线的规则始终是简单的。想象你自己在这样一个曲面上一直往前爬行,永远不要回头,也不要向四周看,更不要担心你从哪里来,要到哪里去,仅仅是盲目地向正前方爬去。那么你的路径是一条测地线。

    想象一个坐在机械轮椅中的人,他试图通过一个沙漠。由于随身只携带了少量的水,因此他必须尽快走出沙漠。圆形的小山、马鞍形的山坳通道和深深的山谷确定了一个正曲率和负曲率的地带,驾驶者不清楚轮椅行驶的最佳路径。他起初认为高山和深谷会减缓他的行驶,因此要绕过它们,方法极为简单,减缓其中的一个轮子,那么轮椅就会转向该方向。

    但是几小时过后,驾驶者发觉自己正在经过原来走过的地方,轮椅使他毫无目的地危险行驶。他现在意识到最好的策略,就是完全笔直地向前走,既不左转也不右转。他自言自语道:“仅仅听从你的鼻子。”但是,又如何保证他不是摇摆地行走呢?

    稍加思索,答案显而易见。利用某种装置将轮椅的两个轮子固定在一起,使它们像哑铃一样。以这种方式固定了两个轮子后,这个人再出发,他在沙漠中就会行走最短的距离。

    第1篇 风云篇 - 图26

    从轨道上的任意一点来看,旅行者似乎都在一条直线上行走,但就整体而言,他所行走的路径是相当复杂的,是一条曲线。虽然如此,它已经是最直、最短的线了。

    一直到19世纪,数学家才开始用另外的公理来研究这种新的几何学。诸如格奥尔格·弗里德里希·伯恩哈德·黎曼(Georg Friedrich Bernhard Riemann)等人认为:关于真实空间中“真实”的几何学可能不完全是欧几里得的。然而爱因斯坦是第一个认真考虑这种想法的。在广义相对论中,空间(或者,更为确切的说法是时空)的几何,不仅对哲学家和数学家,而且也对实验家,构成了课题。数学家告诉我们什么样的几何是可能的,但是只有实验家,才能确定空间的“真实”几何。

    为了构造广义相对论,爱因斯坦建立在黎曼的数学工作的基础之上。他想象几何超越于球面和马鞍面之外:空间有凸有凹,某些地方是正弯曲的,某些地方是负弯曲的。测地线在空间延伸着,形成弯曲的、不规则的路线。黎曼只是想到了三维空间,但是爱因斯坦和他同时代的赫尔曼·闵可夫斯基(Hermann Minkowski)引进了某种新的东西:时间作为第四维。(试着形象化它,如果你可以做到,那么你就有着非比寻常的大脑。)

    狭义相对论

    即使在爱因斯坦开始考虑弯曲空间之前,闵可夫斯基就有了将时间和空间组合起来,形成四维时空的想法。他带着些许傲慢但又相当优雅的语气宣告:“自此之后,空间本身和时间本身注定要消失而成为幻影,只有将它们结合起来才能保持独立的实在性。”[27]闵可夫斯基的平坦的(或者是不弯曲的)时空称为闵可夫斯基空间。

    在1908年第80届德国自然科学家和物理学家大会的演讲中,闵可夫斯基用垂直轴来代表时间,水平轴代表所有三维的空间。听众必须要用一点儿想象力才行。

    第1篇 风云篇 - 图27

    闵可夫斯基将时空中的点称为事件。事件这个词的传统用法不仅意味着时间和地点,而且意味着与此同时某事发生了。例如:“在1945年6月16日早晨5点29分45秒,一个非常重要的事件在新墨西哥州的三位一体[28]发生了,测试了第一颗原子武器。”闵可夫斯基所用的事件一词所指的要少一些,它仅指特定的时间和地点,而不管事情是否真实地在那里发生了。他真正指的是:事件可能发生也可能不发生的一个特定的时间和地点,但这样说就有点儿绕口,因此他就仅称它为事件。

    时空的中直线或曲线在闵可夫斯基的工作中起了特殊的作用。空间中的点代表粒子的位置。但是,为了在时空图中画出粒子的运动,你可以画一条为直线(或曲线)的轨道,称为世界线。关于运动的某种分类是无法避免的。即使粒子完全保持静止状态,然而它依然在时间上旅行。于是,一个静止粒子的轨迹是一条垂直的直线,一个向右运动的粒子的轨迹是一条向右倾斜的世界线。

    第1篇 风云篇 - 图28

    相似的,向左倾斜的世界线描述向左运动的粒子。偏离垂直线越远,粒子运动得越快。闵可夫斯基用倾斜45°角的直线来描述光线的运动,它是运动最快的客体。由于任何粒子的运动速度都无法超过光速,因此一个真实物体的轨道偏离垂直线的角度不能超过45°。

    由于比光运动得慢的粒子的世界线接近垂直线,因此闵可夫斯基将它称为类时的轨迹。他将45°的光线的轨道称为类光的轨迹。

    固有时

    对人类的大脑而言,距离是一个极为容易把握的概念。当沿着直线测量距离时尤为简单,为了测量它,你仅需要一把普通的直尺。在曲线上测量距离有点儿困难,但并不是非常困难,只要用一个可弯曲卷尺代替直尺即可。然而,时空中的距离更为精妙,一时之间不知如何测量。事实上,在闵可夫斯基引入它之前并没有这个概念。

    第1篇 风云篇 - 图29

    闵可夫斯基特别喜欢沿着世界线来定义距离的概念。例如,取静止粒子的世界线。由于它的轨道不包括任何空间上的距离,因此直尺或卷尺不是正确测量它的工具。但是,闵可夫斯基意识到:甚至是一个完全静止的物体依然在随时间流逝。正确测量它的世界线的方法不是用直尺,而是用时钟。他将测量世界线距离的新方法称为固有时。

    想象任何物体,无论它到哪里,都随身携带着一个小时钟,正如同人所携带的袖珍手表一样。沿着同一条世界线的两事件间的固有时是它们之间所流逝的时间,这可以用沿着此世界线的时钟来测量。时钟的滴答声类似于沿着卷尺的英寸符号,但它不是测量普通的距离,而是测量闵可夫斯基空间中的固有时。

    这里有一个具体的例子。龟先生和兔先生打算在中央公园里举行赛跑。公园两头的仲裁员各自携带着经过仔细同步校正的时钟,因此他们可以计时得出胜负。两个参赛者恰好从12点钟开始出发,当兔先生中途经过公园时,他就已经遥遥领先了,因此决定小憩片刻,再继续赛跑。但是他睡过头了,睡醒时他发现龟先生刚巧要接近终点线了。兔先生为了不输掉比赛而孤注一掷,他像闪电一样冲刺,恰好赶上与龟先生同时冲过终点线。

    龟先生拿出他高度可靠的袖珍手表,自信地给等待的人群看他的世界线上从初始到终了的固有时,是2小时56分。但为什么是固有时这个新术语呢?为什么龟先生不只是说他从出发到结束的时间是2小时56分呢?难道时间不仅仅是时间吗?

    牛顿一定是这样想的。他坚信上帝的主时钟确定了一个均匀流逝的时间,所有的其他的时钟都与之同步。为了生动地说明牛顿的世界时,想象空间充满着同步的小时钟。这些时钟是良好可靠的,它们以相同的速率运行着,因此一旦被校准,它们将永远保持同步。无论龟先生或是兔先生恰好位于何地,他都可以通过邻近的时钟来知道时间,他也可以查看自己的袖珍手表。假设你的袖珍时钟是良好可靠的,无论你在哪里,以多大的速度运行,轨道是沿着直线还是沿着曲线,它都将与邻近的当地时钟保持一致。对牛顿来说,这是不言自明的真理。牛顿的时间是一个纯粹的实在,没有任何相对性可言。

    但是在1905年,爱因斯坦把牛顿的绝对时间弄成一团乱麻了。依据狭义相对论,时钟滴答的速率依赖于它们的运动,即便它们是完全相同的时钟也是如此。在通常情况下,这种效应是无法察觉的,但当时钟的运动接近光速时,它就非常显著了。根据爱因斯坦的说法,任何时钟都沿着它各自的世界线,以各自的速率滴答运行着。因此,闵可夫斯基定义了固有时这个新概念。

    回到龟兔赛跑,当兔先生拿出他的手表时(同样是一个良好可靠的时钟),他的世界线的固有时显示是1小时36分。[29]虽然他们从相同的时空点出发,又在相同的时空点到达,但龟先生和兔先生各自的世界线却有着不同的固有时。

    第1篇 风云篇 - 图30

    龟与兔的世界线

    在进一步讨论固有时之前,多考虑一下用卷尺沿着曲线测量普通的距离方法是有益的。在空间任选两点,在它们之间画一条曲线。那么沿着这条曲线上的两个点相距多远呢?答案显然依赖于曲线。这里有两条曲线,它们连接着相同的两点(a和b),但有着不同的长度。当沿着上面的一条曲线时,a和b之间的距离是5英寸;沿着下面的一条曲线时,它们之间的距离是8英寸。

    第1篇 风云篇 - 图31

    第1篇 风云篇 - 图32

    当然,a和b之间的不同曲线有着不同的长度这个事实丝毫没有任何令人吃惊的地方。现在我们回到时空中世界线的测量问题。下面是一个典型的世界线图形。注意此世界线是弯曲的,这意味着沿着这个轨道运动的物体不是匀速的。在这个例子中,一个快速运动的粒子慢下来了。图中的点表示时钟的滴答声,每个间隔代表一秒。注意,当角度趋于水平时,每一秒钟滴答得更为缓慢。这并不是一个错误,它表示时间延缓,与缓慢运动或静止的时钟相比,快速运动的时钟更慢些,这是爱因斯坦的著名发现。

    我们来考虑连接两事件的两条曲线。爱因斯坦永远是一个思想实验家,他想象一对双生子,我把他们称为爱丽丝和鲍勃,在同一时刻出生。将他们出生的事件标记为a。在他们出生的那一刻,他们被分开了;鲍勃待在家里,爱丽丝以极大的速度被迅速带走。一段时间之后,爱因斯坦让爱丽丝回头往家走。最终,鲍勃和爱丽丝在b处再一次相遇。

    第1篇 风云篇 - 图33

    在出生的时候,爱因斯坦给他们完全相同的袖珍手表,它们是协调一致的。当鲍勃和爱丽丝最终在b处相遇时,他们比较各自的手表,发现了令牛顿为之惊讶的事情。首先,鲍勃长着灰长的胡须,而爱丽丝却正值青春。根据他们各自的袖珍手表,爱丽丝世界线上的固有时要比鲍勃的小得多。正如两点间通常意义上的距离依赖于连接它们的曲线一样,两事件间的固有时依赖于连接它们的世界线。

    爱丽丝注意到她的时钟在旅途中变慢了吗?回答是一点儿也没有察觉。她的手表不是唯一变慢的东西,她的心跳、脑功能和全部的新陈代谢都变慢了,在旅行中,爱丽丝无法将她的时钟与其他东西相比。但是当最终和鲍勃再次相遇时,她发现自己要比鲍勃年轻得多。这个“双生子佯谬”让学物理的学生为之困惑已达100年之久。

    你可能已经发现了一个特性,鲍勃在时空中以一条直线行驶,而爱丽丝则在一条弯曲的轨道上运行。然而沿着爱丽丝轨道的固有时要比鲍勃的短。这是闵可夫斯基空间几何学中一个反直觉的事实:两事件间直的世界线有着最长的固有时。将这件新装备放进你的大脑工具包吧!

    广义相对论

    空间如同黎曼一样,爱因斯坦坚信几何(不仅是空间,而且是时空)是弯曲的、可变的。他所指的不仅是空间,而且是时空的几何。按照闵可夫斯基的做法,爱因斯坦让一个轴代表时间,另一个轴代表全部的三维空间,但是他不再把时空视为平坦的平面,而将它想象成一个扭曲的曲面,随波逐流地弯曲。粒子仍然沿着世界线运动,时钟以固有时滴答运行,但是时空的几何变得非常不规则。

    第1篇 风云篇 - 图34

    空间

    爱因斯坦的定律

    令人感到惊讶的是,弯曲时空中的物理定律在许多方面要比牛顿物理学中的更为简单。下面以粒子的运动为例。牛顿定律以惯性定律为开始:

    任何物体在不受外力的情况下保持匀速运动状态。

    这条听起来简单的规则中有一个短语“匀速运动”,它隐藏着两种不同的说法。第一种指,匀速运动意味着是在空间中的一条直线上运动。然而牛顿所指的更强:匀速运动还隐含着恒定的、不变的速度,也就是没有加速度。[30]

    但是引力又是什么呢?为此牛顿增加了第二条定律,是有关非匀速运动的定律,即力等于质量乘以加速度,或者用不同的方式表达为:

    物体的加速度等于作用到它上面的力除以它的质量。

    当涉及引力时,应用第三个规则:

    作用于任何物体上的力正比于它的质量。

    闵可夫斯基用巧妙的洞察力概括了牛顿关于匀速运动的两个条件:

    任何物体,当它不受外力时,它沿着时空中直的世界线运动。

    直的世界线不仅意味着在空间上是直的,而且意味着恒定的速度。

    闵可夫斯基的直的世界线假设,完美地结合了匀速运动的两个方面,但它只适用于完全没有力的情形。当爱因斯坦将闵可夫斯基的思想,应用到弯曲时空时,他把它提升到了一个新的高度。

    爱因斯坦的新定律令人惊讶地简单。沿着世界线上任意一点,粒子进行了最为简单的事情:它笔直地向前走(在时空中)。如果时空是平坦的,那么爱因斯坦定律就是闵可夫斯基定律,但如果时空是弯曲的,即某区域中的巨大物体,使时空发生变形和扭曲,那么新的定律就使得粒子沿着时空中的测地线运动。

    正如闵可夫斯基所解释的,弯曲的世界线表明,有力作用在物体上。根据爱因斯坦的新定律,粒子在弯曲时空中尽可能沿着直线运动,不过测地线为了和局部时空的形状相匹配,它不可避免地发生弯曲。爱因斯坦的数学方程表明,弯曲时空中世界线的行为,与粒子在引力场中的弯曲世界线极为相似。因此,引力只不过是弯曲时空中测地线的弯曲。

    爱因斯坦用一个有趣的简单定律结合了牛顿定律和闵可夫斯基的世界线假设,并解释了引力是如何作用到物体上的。牛顿把引力作为自然界中一个无法解释的事实,爱因斯坦将它解释为非欧几里得时空几何的效应。

    粒子沿着测地线运动,这个原理为我们提供了一种强有力的新方法来思考引力,但是它没有提到引起曲率的原因。爱因斯坦为了完成他的理论,就必须解释是什么决定了时空的扭曲和其他不规则变化。在旧的牛顿理论中,引力场的源是质量:像太阳这样的大质量的存在,产生了其周围的引力场,引力场接着影响了星体的运动。因此自然而然地,爱因斯坦推测是质量(或者等价地说是能量)的存在引起了引力场的扭曲或弯曲。约翰·惠勒是现代相对论理论的伟大先驱者和传授者之一,他用了一个简洁的口号式话语来总结如下:“空间告诉物体如何运动,物体告诉空间如何弯曲。”(他所说的空间指的是时空)

    爱因斯坦的新思想意味着时空不是被动的,它的性质,例如曲率,对质量的存在作出反应。时空近乎是一种弹性的材料,甚至是一种流体,受到其中运动的物体的影响。

    巨大物体、引力、曲率和粒子的运动之间的联系,有时可以用一个类比来描述,对此我抱着一种复杂的心态。这个想法把空间想象成一个水平的橡皮垫,就如同蹦床一样。当没有物体使其发生变形时,垫子保持平坦。但是,当把一个重物,像保龄球,放在它上面时,就会使它变形。现在加一个质量小得多的物体,一颗弹丸就可以了,观察弹丸落向保龄球时的行为。还可以给弹丸某个切向速度,这样它绕着重物运动,就像地球绕着太阳运动一样。橡皮垫表面的凹陷防止小质量的物体飞出去,就如同太阳的引力拴住了地球一样。

    第1篇 风云篇 - 图35

    这个类比有着误导性的地方。首先,橡皮垫的曲率是空间曲率,而不是时空的曲率。它无法解释质量引起邻近时钟的独特效应(我们将在下一章来讨论这些效应)。更为糟糕的是,这个模型用引力来解释引力。地球对保龄球的引力引起了橡皮垫表面的凹陷。从专业的意义上而言,用橡皮垫模型来进行类比是完全错误的。

    然而,这个类比确实抓住了广义相对论的某些精髓。时空是可变形的,重物能使其形状发生改变,小物体的运动受重物所产生的曲率的影响。凹陷的橡皮垫很像我不久将要在数学上解释的嵌入图。当这个类比对你有帮助时就利用它,但记住它仅仅是个类比。

    黑洞

    取一个苹果,将它从中间切开。苹果是三维的,但新剖开来的截面是二维的。如果你把所有的这些二维的细苹果薄片堆积起来,你可以重新构建苹果。你可能会说每一个细薄片被嵌入更高维的薄片垛之中。

    第1篇 风云篇 - 图36

    时空是四维的,但当把它切成薄片后,我们就展现出三维空间薄片。它可以被形象化为一垛薄片,每一薄片代表某个特定时刻的三维空间。形象化三维空间要比形象化四维空间容易得多。这些薄片的图景被称为嵌入图,它为弯曲几何提供了一个直觉的图景。

    我们以太阳产生的几何为例。暂时忘记时间,而专注于形象化太阳周围的弯曲空间。嵌入图就如同橡皮垫上的微小凹陷,以太阳为中心,这几乎类似于放有保龄球的蹦床。

    第1篇 风云篇 - 图37

    如果质量集中在一个更小体积之内,那么太阳周围的扭曲会更为显著。

    第1篇 风云篇 - 图38

    虽然白矮星或中子星周围的几何更为弯曲,但它仍然是光滑的。

    第1篇 风云篇 - 图39

    正如我们早先所了解到的,如果一个正在坍缩的恒星收缩到足够小,包含在史瓦西半径(对太阳来说,史瓦西半径是2英里)之内,接着就像蝌蚪被困入排水孔中一样,组成太阳的粒子无法抗拒吸引力,一直坍缩下去,直到它们形成奇点,一个有着无穷大曲率[31]的点。

    第1篇 风云篇 - 图40

    讹传中的黑洞

    我想这一小节会引来某些读者愤怒的邮件,他们关于黑洞的知识主要来自于迪斯尼电影《黑洞》。我不想被人称为煮鹤焚琴的人,上帝知道黑洞是引人入胜的物体,但它不是通往天堂、地狱或是其他宇宙,甚至是返回自身宇宙之门。因为在爱情、战争和科幻小说里,一切都是美好的,我不是真的在意电影制作人是否曾到旮旯岛旅行过。但是为了理解黑洞,所要求的要比仔细学习二流电影要多得多。

    事实上,黑洞的前提起源于爱因斯坦和他的合作者内森·罗森(Nathan Rosen)的工作,随后在约翰·惠勒那里变得为人所知了。爱因斯坦和罗森推测黑洞的内边界,通过惠勒后来称之为虫洞的东西与遥远的地方相连接。他们的想法是,两个也许相距几十亿光年远的黑洞,可以在它们的视界处相连接,形成穿越宇宙的奇妙捷径。相反的是,黑洞的嵌入图,不再是终结于尖锐的奇点,一旦穿过视界,将到达一个新的宽广的时空区域。

    第1篇 风云篇 - 图41

    爱因斯坦—罗森桥

    从一个端点进去,从另外一个端点出来,就像是在纽约穿过隧道,在不超过几英里后出现在北京,甚至是火星上。惠勒的虫洞基于广义相对论的真正的数学解。

    黑洞作为通往其他世界的通道,这个荒诞的神话起源于此。但是,这个想象有两处错误。首先,惠勒的虫洞只能开放很短的一段时间,接着它就关闭了。虫洞的开闭如此之快,以至于任何事物(包括光)都无法从其中经过。因此,通往北京的短通道,在我们经过它之前就已经坍缩掉了。某些物理学家推测量子力学可能通过某种方式来使得虫洞稳定化,但对此毫无确凿的证据。

    其次,爱因斯坦和罗森研究的是“永恒的黑洞”,它不仅存在于无限的未来,而且也存在于无限的过去。但是,即使宇宙的年龄也不是无限大。真实的黑洞一定起源于恒星(或者其他超重物体)的坍缩,这发生在大爆炸很久之后。当把爱因斯坦方程应用到黑洞的形成时,并没有虫洞来连接它们,嵌入图则与上图相似。

    既然我破坏了你的美好一天,我建议你去租下那部迪斯尼电影的光盘,寻找一下乐趣吧!

    如何建造时间机器

    未来不为古人用。

    ——约吉·贝拉

    时间机器是科幻小说中另外一个骗人的玩意儿,是许多书籍、电视节目和电影的主题,它究竟是怎样的呢?就我个人而言,我希望拥有一台。对将来会是什么样,我真的感到非常好奇。今后100万年人类还存在吗?他们能克隆空间吗?性别作为生殖发育的优先方式还存在吗?我想知道,我猜想你同样也想知道。

    对于你的愿望,你需要当心,到未来旅行的行情并不一定会上涨。你所有的朋友和家人都死去很久了,你的衣服看起来很可笑,你的语言也将会毫无用处。简而言之,你会成为一个怪人。如果通向未来的单向旅行不是灾难性的,那也是令人感到沮丧的。

    这没有问题。你仅需要爬回你的时间机器,把指示表设定为现在即可。但是,如果你的时间机器的传动装置没有倒挡呢?如果你只能向前走呢?你究竟还会不会做这件事情呢?你可能认为这是一个无意义的问题,每个人都知道时间机器是科幻小说的产物。事实上,这是不正确的。

    通向未来的单向时间机器是极为可能的,至少理论上来讲是这样。在伍迪·艾伦(Woody Allen)的电影《沉睡者》中,主人公利用一个现今几乎可行的技术,到达了200年后的未来。他只是把自己冷冻到假死的状态,这在狗和猪身上已经实验过了,达几小时之久。当他从冷冻状态醒来时,他就在未来了。

    当然,这个技术并不是真正意义上的时间机器。它可以减缓人的新陈代谢,却无法减缓原子和其他物理过程的运动。然而我们可以做得更好。还记得在出生时刻被分开的双生子鲍勃和爱丽丝吗?当爱丽丝从空间旅行回来后,发现除她之外的世界,已变老了许多。因此,在一个快速的宇宙飞船中往返一次,是时间旅行的一个例子。

    一个大黑洞是另外一台非常便利的时间机器。我们来看它如何工作。首先,你需要一个环绕着黑洞的空间站和一条长的绳索,将你放到视界附近。你不想靠得太近,当然你也不想穿过视界,因此绳索必须非常结实。空间站上的绞车会把你放下,经过原定的时间后,再把你收回来。

    我们假设你想去1000年后的将来,你也乐意被绳索悬挂一年,而且由引力引起的不适并不明显。这是可以做到的,但是你需要找一个视界和我们的星系一样大的黑洞。当然,如果你不在意引起的不适,可以用我们星系中心一个小得多的黑洞来实现。在视界附近处下放的一年中,你会感到自己重达100亿磅。在绳索上度过一年之后,当你被转回来时,你发现1000年已经过去了。至少从理论上来说,黑洞的确是通往未来的时间机器。

    但是如何回来呢?为此你需要一个通往过去的时间机器。哎呀,在时间上回到过去很可能是无法实现的。物理学家时常推测通往过去的时间旅行要穿越量子虫洞,但是在时间上回到过去,常常会导致逻辑上的矛盾。我猜想你会被困在未来,而且对此无能为力。

    引力导致的时钟变慢

    是什么使得黑洞成为时间机器呢?答案在于它们引起了时空几何的强烈扭曲。扭曲使得世界线上不同位置处的效应不一样,所以影响固有时流逝的方式也会不同。在离黑洞很远的地方,它的效应是非常微弱的,固有时的流逝几乎不受其影响。但是由于时空的扭曲,恰好悬挂在视界正前方处的时钟,会明显变慢。事实上,所有的时钟,包括你自身的心跳、新陈代谢,甚至是体内的原子运动,都会变慢。你丝毫不会注意到这种现象,但当你回到空间站,将你的手表和舱内的时钟相比时,你才会注意到差异。空间站的时间要比你手表上流逝快得多。

    事实上,返回空间站去观测黑洞,对时间的效应并不是必要的。如果你被悬挂在视界附近,我在空间站上,我们各自都用望远镜来相互看对方。我看到你连同你的时钟的运动变慢了,而你看到我在加速,就像观看启斯东公司出品的警察老电影[32]。在大质量物体附近,这种时间的相对延缓称为引力红移。爱因斯坦发现的引力红移,是广义相对论的一个自然推论,在牛顿的引力理论中并没有对应的效应,因为时钟以完全相同的速率滴答运行着。

    接下来的时空图展示了黑洞视界处的引力红移。图中左边的物体是黑洞。记住,此图表示的时空,垂直轴是时间。灰色的表面是视界,距离视界不同距离处的竖直轴代表一群等同的静止钟。标记号代表沿着世界线上固有时的流逝。单位并不重要,它们可以是秒、纳秒或者年。离黑洞视界越近,时钟滴答得越缓慢。相对于黑洞外的时钟而言,恰好在视界处的时钟完全静止。

    第1篇 风云篇 - 图42

    引力的时钟延缓可发生在不是很奇异的环境下,而并不一定要在黑洞视界处。一个合适的环境是太阳表面。原子是微型时钟,电子绕原子核的运动如同时钟的指针一样。从地球上来看,太阳上的原子运动得要慢一些。

    同时性的丧失、双生子佯谬、弯曲时空、黑洞和时间机器,这些新而奇妙的想法如此之多,但它们都是可靠的,是物理学家都认同的、无争议的概念。这需要煞费苦心地进行重新装备,微分几何、张量微分、时空矩阵、微分形式来理解时空的新物理。然而,与调和广义相对论和量子力学,所产生的令人困扰的概念上的困难相比,即使是仅仅过渡到梦幻般的量子王国时,所遇到的困难相比,这些棘手的事情就算不得什么了。在过去,有人认为量子力学无法与爱因斯坦的引力理论共存,似乎应该被抛弃。但是,可能也有人会说黑洞战争是一场“为保卫量子力学的战争”。

    在下一章中,我几乎不使用方程式,而尝试用堂吉诃德式的重新装备来使你适应量子力学。思考量子宇宙的真实工具是抽象的数学,这包括无穷维的希尔伯特空间、投影算符、幺正矩阵和许多其他高等原理,这需要几年的时间来学习它们。然而,让我们来看如何用几页纸来说明它们。

    第4章 “爱因斯坦,请不要告诉上帝该做什么”

    第1篇 风云篇 - 图43

    她放下杯子,胆怯地问道:“光是由波,还是由粒子组成的呢?”

    房前的一棵大树下,放着一张桌子,三月兔和帽匠坐在旁边喝着茶,一只睡鼠在它们中间酣睡,那两个家伙把它当作垫子,把胳膊支在睡鼠身上,而且就在它的头上谈话。爱丽丝想道:“这睡鼠太不舒服了,不过它已睡着,可能就不在乎了。”[33]

    自从爱丽丝上了最后一次科学课之后,她就深深地被某种东西所困惑,她希望她的这位新朋友可能会澄清这些混乱。她放下杯子,胆怯地问道:“光是由波,还是由粒子组成的呢?”“是的,完全是这样。”帽匠回答道。爱丽丝有些恼火,提高声音问道:“我重复一下我的问题:光是粒子还是波?答案是什么呢?”“是这样的。”帽匠回答。

    欢迎来到乐趣屋,这儿是疯狂、混乱的量子世界,不确定法则和一切都无法感知。

    部分地回答爱丽丝

    牛顿认为光线是由一束微小的粒子组成的,几乎类似于从机枪中快速射出的小子弹。虽然这个理论几乎是全盘错误的,但它巧妙地解释了光的许多性质。直到1865年,苏格兰数学家和物理学家詹姆斯·克拉克·麦克斯韦彻底怀疑牛顿的子弹理论。他证明光是由波——电磁波组成的。麦克斯韦建造的大厦惊人地坚固,不久就成为一个普遍接受的理论。

    麦克斯韦指出,当电荷运动时,例如电线中电子的振动,运动电荷将导致波浪般的扰动,非常类似于在池塘中摆动手指所引起的波浪。

    第1篇 风云篇 - 图44

    光波是由电磁场组成的,和带电粒子、导线中电流和普通磁铁周围的场完全一样。当电荷和电流振动时,发出的波在真空中以光速传播。事实上,当你把一束光射向两条狭缝时,你可以发现由波的叠加所形成的清晰的干涉图样。

    第1篇 风云篇 - 图45

    麦克斯韦的理论甚至可以说明光为什么是五颜六色的。波由波长所表征,波长是从一个波峰到相邻波峰的距离。这里有两列波,第一列波的波长要比第二列长。

    第1篇 风云篇 - 图46

    想象以光速运行的两列波恰好经过你的鼻子。当它们经过时,波周而复始地从最大值到最小值振荡,波长越短,波振荡得越快。每秒钟全振动(从最大值到最小值,再到最大值)的次数称为频率,显然短波的频率更高些。

    当光到达你的眼睛时,不同频率的光对视网膜上的视网膜杆细胞和圆锥细胞影响方式不同。传往大脑的信号会显示成红色、橙色、黄色、绿色、蓝色或紫色,这依赖于频率(或波长)。相对于谱的蓝端或紫端来说,谱的红端由较长波长(或较低频率)的波组成:红光的波长大约是700纳米[34],然而紫光的波长只是它的一半。由于光传播得如此之快,因此振动的频率是非常巨大的。蓝光1秒钟振动1015次,红光的振动次数大约是该次数的一半。用物理术语来讲,蓝光的频率是1015赫。

    光的波长能大于700纳米或小于400纳米吗?当然可以,但那就不再是可见光,眼睛对这样的波长不再敏感。紫外线和X射线的波长比紫光短,所有射线中波长最短的是伽马射线。在长波段,我们有红外线、微波和无线电波。从伽马射线到无线电波的整个谱就是著名的电磁辐射。

    因此,爱丽丝,你所问问题的答案是:光的确是由波组成的。

    但是请你等一下,不要太着急。在1900~1905年间,一个很令人困扰的意外发现,推翻了物理学的基础,使这个问题陷入完全混乱的状态之中达20年之久(某些人可能会说现在依然混乱)。在马克斯·普朗克(Max Planck)工作的基础之上,爱因斯坦完全“推翻了主流的范式”。本书没有足够的时间和篇幅,来详述他发现的历史,但是到1905年为止,爱因斯坦确信光是由粒子组成的,他称之为量子。不久以后,它们被命名为光子。我们将一个有趣的故事缩写到仅叙述它的实质,当光极其微弱时,它的行为像粒子,每次发射一个,就像断断续续的子弹一样。我们回到那个实验,光经过双缝后,最终到达一块屏上面。减弱光源,将其想象成微小的一滴。波理论家希望得到一个非常微弱的、波形的图案,它是几乎不可见的,也可能是完全不可见的。但无论可见与否,我们所期望的形状应是波形的。

    第1篇 风云篇 - 图47

    通常情况下爱因斯坦是对的,但这不是他所预言的结果。他的理论得到的是光点,而不是连续的图形。第一次闪光无规则地出现在屏上不可预料的某点。下一次闪光随机地出现在另一处,接着是又一次闪光。如果把这些闪光照下来,叠加在一起,在这些随机闪光中会出现一个类似于波动的图样。

    那么光是粒子还是波呢?答案依赖于所进行的实验和你所问的问题。如果实验涉及的光很暗,以至于每次流出一个光子,光表现为无法预测的、随机的光子。但如果有足够多的光子,以至于它们可以形成一个图案,光的行为就像波。伟大的物理学家尼尔斯·玻尔(Niels Bohr)认为,光的波动理论和光的粒子理论是互补的,以此来描述这个令人混乱的状况。

    第1篇 风云篇 - 图48

    爱因斯坦主张光子必须具有能量,对此有确切的证据。太阳光是由太阳发射的光子,它们使地球变得温暖。太阳能电池板将太阳光子的能量转化成电能,电能可以使发动机运转,可以提升重物。如果光具有能量,那么组成它的光子也必须如此。

    很显然,单个光子只有一份很小的能量,但精确说来是多少呢?烧开一杯茶或发动一个100瓦的发动机需要多少光子呢?答案依赖于辐射光的波长。相对于波长较短的光子来说,波长较长的光子含有较少的能量。因此,为完成一定的工作,需要更多的长波光子。一个非常著名的公式给出了单个光子的能量和其频率之间的关系[35],虽不及E=mc2著名,但也是非常出名:

    E=hf

    方程左边的E代表光子的能量,单位是焦耳。方程右边的f是频率。蓝光的频率是1015赫。余下的那个量h是著名的普朗克常数[36],是普朗克在1900年引入的。普朗克常数很小,但它是自然界中最重要的常数之一,统领着所有的量子现象。它和光速c、牛顿引力常数G并驾齐驱。

    h=6.62×10-34

    由于普朗克常数如此之小,因此单个光子的能量是很小的。为了计算一个蓝色光子的能量,用普朗克常数乘以它的频率1015赫,可得到6×10-19焦。这的确不是很多的能量,需要1039个蓝光光子才能煮开你的茶,需要2倍这样数目的红光光子才能做到这点。相比之下,用目前有着最高能量的伽马射线来烧开同一杯茶,仅需要1018个光子。

    脱离所有这些公式和数字,我只想你记住一件事情:光线的波长越短,单个光子的能量越高。高的能量意味着短的波长,低的能量意味着长的波长。把它念几遍,然后写下来。现在再来说一遍:“高的能量意味着短的波长,低的能量意味着长的波长。”

    预测未来

    爱因斯坦理直气壮地宣称:“上帝不掷骰子。”[37]尼尔斯·玻尔的回答很尖锐,玻尔责备他:“爱因斯坦,不要想知道上帝如何工作。”这两位物理学家都极为接近美学家,似乎他们当中的任何一个,都无法想象坐在云端的神来掌管这天地。但玻尔和爱因斯坦正在争论某种全新的物理,这是爱因斯坦所无法接受的:量子力学奇异的新规则意味着不可预知性。爱因斯坦的思维反对此种想法,反对自然定律中有着随机的、无法控制的因素。光子的到达完全是一个无法预知的事件,这深深地与他的性格相抵触。相比之下,尽管玻尔也不喜欢这个想法,但他接受了它。他同时相信将来的物理学会重新改写量子力学,改写的部分包括爱因斯坦所害怕的不可预知性。

    这并不是说玻尔擅长形象化思考量子现象,对此应付自如。他曾经说过:“谁要不为量子理论感到震惊,那他一定没有理解它。”许多年之后,理查德·费曼说:“我可以有把握地说,没有人懂量子力学。”他对此补充说道:“自然界的行为越是奇异,越是无法用一个模型来描述它,甚至对最简单的现象也是如此。因此理论物理学已经放弃了这一点。”我认为费曼并不是说物理学家应该放弃解释量子现象,毕竟他在不断地解释它们。他想说的是,人类无法用标准的智力装备的形象化术语来解释量子现象。如同其他物理学家那样,费曼不得不诉诸抽象的数学。显然,阅读本书中没有方程的这一章,无法使你重新装备自己,不过耐心点儿,我想你会抓住要点的。

    爱因斯坦坚决相信自然定律是决定性的,而这正是物理学家应该摆脱的首要观点。决定论意味着,如果我们对现在了解得足够多,那么将来是可预测的,牛顿力学以及它的一切推论,都是有关预测未来的。皮埃尔·德·拉普拉斯(Pierre de Laplace)(就是提出暗星的那个拉普拉斯)坚信将来可以预测。他写道:

    我们可以把宇宙现在的状态,视为过去的果以及未来的因。如果有一位智者,他能够在某一特定时刻,通晓一切可以主宰自然界运动的力,熟知这个自然界组分的位置,假如他也能够对这些数据进行分析,那么从宇宙里最大的物体到最小的原子的运动,都包含在一条简单的公式之中。对于这位智者来说,没有什么事物是不确定的,而未来只会像过去般呈现在他的面前。

    拉普拉斯只是简单地展示了牛顿运动定律的推论。事实上,牛顿和拉普拉斯看待自然界的观点,是纯粹的决定论。为了预测未来,你仅需要知道宇宙中所有粒子在某一初始时刻的位置和速度即可。噢,对了,还有一点:你需要知道作用在每一个粒子上面的力。注意,仅知道某一时刻粒子的位置是不够的,知道了粒子的位置并不能告诉你它将欲往何处。但是,如果你知道它的速度[38],包括它的大小和方向。你可以说出下一时刻它将在何处。物理学家用初始条件来指定某一时刻为预测系统将来的运动所需要了解的一切。

    为了理解什么是决定论,我们来想象一个最为简单的可能世界,它是如此的简单,以至于仅存在两种状态。硬币是一个非常好的模型,它的两种状态分别是“字”面和“背”面。我们同样需要确定一条定律来支配事物从一个时刻到另一个时刻如何变化。这个定律有如下两种可能性:

    这第一个样本是非常乏味的。所定的规则是:什么也没有发生。如果某一时刻硬币的字(H)朝上,那么接下来的时刻(即1纳秒之后)也是字朝上。同样的,如果某一时刻硬币的背(T)朝上,那么接下来的时刻也是背朝上。这个定律可以用一对简单的“公式”简述为:

    H→H T→T

    世界的历史是H H H H H…,或者是T T T T T…,不断地进行着。

    如果第一条规则是令人乏味的,接下来的这条规则稍微要好一些:无论某一时刻是什么状态,1纳秒之后转为相反的状态。这可以用下述方式象征性地表述为:

    H→T T→H

    历史的行程为H T H T H T H T…,或者是T H T H T H T H…。

    这两条规则都是决定论的,意味着将来完全由初始点来决定。不管在哪种情况下,如果你知道了初始条件,就可以确切地预测任何一段时间之后将发生什么。

    决定性的定律不是唯一的可能性,随机定律同样也是可能的。最简单的随机定律是:无论初始状态是什么,接下来的时刻字和背将随机出现。以背开始的一个可能的历史是T T T H H H T T H H T H H T T…,不过T T H T H H T H H H T T…同样也是可能的。事实上,任何序列都是可能的。你可以认为世界没有定律,或者世界的定律是随机地更新初始条件。

    定律不需要是纯粹决定性的或纯粹随机性的。这些都是极端的情况,一个定律主要是决定性的,仅仅有一点随机性是可能的。定律可能显示,状态以9/10的概率保持不变,以1/10的概率发生翻转。一个典型的历史如下:

    H H H H H H H T T T T T T T T T T T T H H H H H H H H H H H H H T T T T T…

    在这种情况下,赌徒可以很好地猜测最近的将来:下一个状态几乎和现在的状态相同。甚至他可能会更大胆一点儿,猜想接下来的两个状态都和现在一样。他正确的机会很大,只要他不将猜测拉得过长。如果他试图猜测更远的将来,他正确的概率不会大于1/2。这种不可预知性正是爱因斯坦反对的东西,因此他说上帝不掷骰子。

    你可能会对其中某些方面感到困惑:真实掷硬币的序列更多地像完全的随机定律,而不是其中的一个决定性定律。随机性似乎是自然界中一个常见的特点。谁需要量子力学来使得世界不确定呢?在不考虑量子力学的情况下,普通硬币的无法预测性的原因,仅仅是太常见的疏忽,源于记录每一个相关的细节通常太困难。硬币并不是真实的孤立世界。肌肉移动手指抛硬币、屋子中的空气流、硬币和空气分子热振动的细节都与结果相关,不过在大多数情况下我们不需要处理这些信息。记住,拉普拉斯说道,了解了“使得自然运动的所有力,组成自然界的所有组分的位置”。然而仅一个分子的位置的微小错误可能会毁坏预测未来的能力。不过这种通常的随机性并不是困扰爱因斯坦的东西。关于上帝不掷骰子,爱因斯坦所指的是:自然界最深邃的定律,有着无法避免的随机性,即使我们知道了所有的细节,也无法克服它。

    信息不朽

    一个不允许随机性存在的原因是,在大多数情况下,过程一定不能违背能量守恒(见第7章)。这个定律说明,虽然能量有多种形式,可以从其中一种转化到另外一种,但能量的总量永不变化。能量守恒是自然界中最为精确地确立了的事实之一,破坏它的余地留得很少。随机地冲击物体会改变它的能量,使其突然加速或减速。

    存在另外一个非常精妙的物理定律,它也许比能量守恒更为基本。有时我们称它为可逆性,但在这里我们就叫它信息守恒。信息守恒意味着,如果你精确地了解现在,那么你也能够了解任何时刻的将来,但这仅仅是它的一方面。我们同样可以说,如果你知道现在,那么你可以完全了解过去。它可以有两个走向。

    在单个硬币的字与背的世界中,一个纯粹的决定论可以保证信息完全守恒。例如,如果定律是:

    H→T T→H

    那么将来和过去都可以很好地预测。然而,甚至是微小的随机性都会破坏这个完美的可预知性。

    我们再来给出另外一个例子,这次是一个假想的三面硬币(骰子是六面硬币),分别称这三个面为“字”“背”和“侧”,记为H、T和F。下面是一个完全的决定性定律:

    H→T T→F F→H

    为了形象化这个定律,画一个图是有所帮助的。

    有了这个定律,以H为初始状态的世界的历史会如下:

    H T F H T F H T F H T F H T F H T F H T F H T F…

    实验上存在验证信息守恒的方法吗?事实上,存在着很多种方法,只不过是某些可行,某些不可行而已。如果你能控制定律,随你的意愿去改变它,那么有一个简单的方法可以验证信息守恒。三面硬币的运作方式如下:以硬币的三种状态之一开始,保持某种特定长的时间;假设每一纳秒,状态从H翻转到T,再到F,在三种可能性之间循环,在时间段结束时改变定律。新的定律与旧的定律相反,是逆时针而不是顺时针。

    第1篇 风云篇 - 图49

    第1篇 风云篇 - 图50

    现在让系统逆向运转和前次同样长的时间。原来的历史会复原,硬币会回到初始点。不论你经过了多长时间,决定性定律总能保持良好的记忆,总能回到初始条件。为了检测信息守恒,你甚至不需要知道精确的定律,只要知道如何翻转它就行了。只要定律是决定性的,这个实验总是能行得通。但如果有随机性,实验就会失败,除非是一种非常微妙的随机性。

    现在让我们回到爱因斯坦、玻尔、上帝和量子力学。爱因斯坦另一个更为著名的语录是“上帝是微妙的,但也没有心怀恶意”。我不知道是什么,促使他想到物理定律没有恶意。就我个人而言,尤其是随着年龄的增长,我偶尔会发现引力定律很有恶意。但是爱因斯坦关于微妙的说法是正确的。量子力学的定律非常微妙,以至于它们允许随机性、能量守恒和信息守恒共存。

    考虑一个粒子:任何一种粒子都行,但光子是一个很好的选择。光子是由光源(例如激光)产生的,指向一个有着小孔的金属板。小孔后面是一个荧光屏,光子打在上面会闪光。

    第1篇 风云篇 - 图51

    经过一段时间之后,光子可能会穿过小孔,也可能会错过它而从障碍物上弹开。如果它穿过了小孔,就会撞在屏上,但不一定位于小孔的正对面。光子走的不是一条直线,当经过小孔时,它可能会接收到随机的脉冲。因此,闪光的最终位置是无法预测的。

    现在移开荧光屏,再次做实验。一小段时间之后,光子或者会撞击到金属板上弹开,或者会经过小孔,然后随机地打在屏上。如果无法探测到光子,那么我们就不可能知道它在哪里,往哪个方向运动。

    第1篇 风云篇 - 图52

    但是,想象我们干预并反向地运用光子的运动定律。[39]如果我们使光子反向运行的时间与上面相同,那么我们希望得到什么呢?一个很显然的预期是,随机性(随机的逆向运行依然是随机的)会破坏光子回到初始位置的可能性。第二部分实验的随机性会复合第一部分的随机性,使得光子的运动变得更加不可预测。

    然而答案更为微妙。在我解释之前,让我们简略地回到三面硬币的实验。在那种情况下,我们也在一个方向运行一个定律,接着反过来运行它。我漏掉了实验中的一个细节:在我们反向运行定律之前是否有人看过硬币呢?如果有人看过了,会产生什么样的差异呢?只要观看硬币时不使它翻动而进入到新的状态,就不会有丝毫的不同。这似乎不像是一个有说服力的条件,于是当有人看硬币时,我也会看到这枚硬币跳入空中并翻动。但是,在微妙的量子力学世界,观看某种东西而不影响它是不可能的。

    以光子为例,当我们反向运行光子时,它会重新出现在原始位置吗?量子力学的随机性会破坏信息守恒吗?答案是令人感到不可思议的:它依赖于我们在干涉时是否观看过光子。关于“观看光子”,我所指的是确定它在哪里和往哪个方向运动。如果我们确实观看了,最终结果(反向运动之后)将会是随机的,信息守恒会失效。但是,如果我们忽略光子的位置,丝毫不去管它的位置和运动方向,而仅仅将定律反向运行,那么经过规定的一段时间之后,光子会神奇般的重新出现在它的原始位置。换句话说,尽管量子力学有它的不可预知性,然而它依然遵守信息守恒。无论上帝是否心怀恶意,他确实是微妙的。

    从数学上来讲,反向运行物理定律完全是可能的。但是,真正做起来怎么样呢?即使对于最简单的系统,我也非常怀疑有人能够反向运行。然而,无论我们在实际中能够做到与否,量子力学的数学可逆性(物理学家称之为幺正性),对它自身的一致性极为重要。没有它,量子逻辑将无法保持完备。

    那么当结合引力与量子力学时,为什么霍金认为信息守恒被破坏了呢?我们将论点归结为一句警句:

    落入黑洞的信息是丢失的信息。

    换个说法来讲,定律永远是不可逆的,因为任何事物都无法从黑洞视界内重新返回。

    如果霍金是正确的,那么自然定律将会增加某种随机性,物理学的整个基础崩溃了。我们以后再回到这个问题。

    不确定原理

    拉普拉斯认为,只要他对现在了解得足够多,他就可以预测未来。不幸的是,对于世界上所有的算命者来说,同时知道一个物体的位置和速度是不可能的。我所说的不可能,并不是非常困难或者是现今的技术无法胜任此任务。遵循物理定律的任何技术永远都无法胜任此事,不可能性的程度并不亚于提高技术来进行超光速旅行。为了同时测定粒子的位置和速度而设计的任何实验都会出现违背海森伯不确定原理的困难。

    不确定原理是重要的分水岭,它将物理学分为量子之前的经典时代和奇异的后现代量子时代。经典物理包括量子力学之前的一切,包括牛顿的运动理论、麦克斯韦的光理论以及爱因斯坦的相对论理论。经典物理是决定论性的,量子物理则充满了不确定性。