附录 注释
[A.1]R.Penrose, W.Rindler(1984),Spinorsandspace-time, Vol.I:Two-spinor calculus and relativistic felds,Cambridge University Press.R.Penrose, W.Rindler(1986),Spinorsandspace-time, Vol.II:Spinor and twistor methods in spacetime geometry,Cambridge University Press.
[A.2]P.A.M.Dirac(1982),Theprinciplesofquantummechanics,4th edn.Clarendon Press[1st edn 1930].E.M.Corson(1953)Introduction to tensors, spinors, and relatavistic wave equations.Blackie and Sons Ltd.
[A.3]C.G.Callan, S.Coleman, R.Jackiw(1970),Ann.Phys.(NY)5942.E.T.Newman, R.Penrose(1968),Proc.Roy.Soc.,Ser.A 305174.
[A.4]这是在广义相对论线性极限下的旋量-2 Dirac-Fierz方程。P.A.M.Dirac(1982),Theprinciplesofquantummechanics,4th edn.Clarendon Press[1st edn 1930].M.Fierz, W.Pauli(1939),‘On relativistic wave equations for particles of arbitrary spin in an electromagnetic field’,Proc.Roy.Soc.Lond.A173211—232.
[B.1]现在的形式很可能需要修正,从而把中衰减的静止质量也包含进来(遵从§3.2)。然而,这很可能使问题大为复杂,所以到目前为止我只限于关心更容易处理的情形,假定我们的“颈圈”不包含
中的静止质量。
[B.2]我并不认为本身是一个大不了的假设,那不过是一个习惯问题。眼下看来,物理常数从一个世代到下一个世代的改变,由其他物理量来替代,不过是一个常数的安排问题。进一步说,我们注意,§3.2中引入的标准“普朗克单位”的替换,可以认为是用Λ=3来代替G=1的条件,因为这更符合我们这儿的CCC形式。
[B.3]E.Calabi(1954),“The space of Kihler metrics”,Proc.Internat.Congress Math.Amsterdam, pp.206—207.
[B.4]幽灵场(Phantom field):很多文献都用这个词,意思不尽相同。
[B.5]见注释3.9。
[B.6]见注释3.9。
[B.7]The full freedom is given by the replacement/(BΩ+A),with A and B constant, whereby
.But this ambiguity is dealt with by the demand thatΩhave a pole(andωa zero)at X.
[B.8]K.P.Tod(2003),‘Isotropic cosmological singularities:other matter models',Class.Quant.Grav.20521—534.[DOI:10.1088/
[B.9]0264—9381/20/3/309]
[B.10]见注释3.28。
实际上,这个算子显然是C.R.Le Brun(1985)在他用扭量理论来定义“爱因斯坦丛”时引进的“Ambi-twistors and Einstein’s equations”,Classical Quantum Gravity2555—563),它构成了East-wood和Rice引进的更一般的一族算子的一部分[M.G.Eastwood and J.W.Rice(1987),“Conformally invariant differential operators on Minkowski space and their curved analogues”,Commun.Math.Phys.109207—228,Erratum,Commun.Math.Phys.144:(1992)213]。它与其他场合也有关系[M.G.Eastwood(2001),“The Einstein bundle of a nonlinear graviton”,inFurther advances in twistor theory vol III,Chapman&Hall/CRC, pp.36—39.T.N.Bailey, M.G.Eastwood, A.R.Gover(1994),“Thomas’s structure bundle for conformal, projective, and related structures”,Rocky Mtn.Jour.Math.24:1191—1217.]现在它成为所谓“与爱因斯坦共形的”算子,也参见下书p.124的脚注:R.Penrose, W.Rindler(1986),Spinors and spacetime, Vol.II:Spinor and twistor methods in spacetime geometry,Cambridge University Press.
[B.11]这个解释是K.P.Tod向我指出的。见PR1986,那个条件被称为“渐进爱因斯坦条件”。R.Penrose, W.Rindler(1986),Spinors and spacetime, Vol.II:Spinor and twistor methods in spacetime geometry,Cambridge University Press.
[B.12]还可以从其他方式来看引力常数的这个有效符号改变,其中一个是比较通过共形无限远时辐射场的“Grgin行为”和引力源的“反Grgin行为”;见Penrose and Rindler(1986),§9.4,pp.329—332.R.Penrose, W.Rindler(1986),Spinorsandspace-time, Vol.II:Spinor and twistor methods in spacetime geometry,Cambridge University Press.
[B.13]K.P.Tod,私人通信。