不确定原理是一个奇怪的、大胆创新的断言,是在埃尔温·薛定谔(Erwin Schrodinger)发现量子力学的数学基础之后不久,由26岁的沃纳·海森伯于1927年作出的。甚至在那个创新思想如雨后春笋般的时代,它依然以它的异常性而突出。海森伯没有提出精确测量物体位置的极限。我们可以无限精度地测量粒子在空间的坐标。他同样也没有提出精确测量物体速度的极限。他所主张的是,任何实验,无论其多么复杂精巧,都永远无法同时测量物体的位置和速度。仿佛爱因斯坦的上帝,规定了我们永远无法知道得足够多,并以此来预测未来。
不确定原理充满了模糊性,但它自身恰恰相反,没有任何模糊性。不确定性是一个精确的概念,它涉及概率测定、微积分和其他新奇的数学。但是,为了解释一个有名的表述,一幅图相当于1000个方程。我们先从概率分布开始。假如有非常多的粒子,比方说1万亿个粒子,我们研究它们在水平轴,也就是x轴上的位置。我们发现第一个粒子在x=1.325 7处,第二个粒子在x=0.913 4处,如此等等。关于所有粒子的位置,我们可以列出一个长的清单。不幸的是,需要像本书这样的书大约1000万册才行,在大多数情形下,我们并不对这个清单特别感兴趣。画一个统计图来表明x位置处粒子的多少将更有启发作用。该图的形状如下:
该图赋予我们的第一个印象是大多数粒子聚在x=1处附近。对于某种目的,这可能就足够了。目测一下此图,我们可能会精确很多。大约有90%的粒子在x=0和x=2之间。如果我们为在哪里发现一个特定的粒子而打赌,那么最好的猜测是在x=1处,而不确定度可以通过数学方法测量曲线的宽度得到,大约是2个单位。[40]希腊字母(Δ)是表示不确定性的标准数学符号。在这个例子中,Δx代表粒子的x坐标的不确定度。
我们来做另一个思想实验。我们所测量的不是粒子的位置,而是它们的速度。如果粒子向右运动,记它的速度为正,向左运动则为负。这一次,水平轴代表速度v。
从图中,你可以看到大多数粒子在向左运动,因此你同时能很好地了解速度的不确定值Δv。
粗略地讲,不确定原理告诉我们:任何试图缩小位置的不确定性的举动,都会不可避免地增大速度的不确定性。例如,我们有可能有目的地选择x一个狭小范围,比如说,x=0.9到x=1.1之间,去掉剩余部分。对这些精挑细选的粒子而言,不确定度只有0.2,比原来的Δx小了10倍。我们可能希望通过这种方式来推翻不确定原理,但这样做是行不通的。
结果证明,对上述同样的这些粒子,我们测量它们的速度,发现速度比原来的样本要发散得多。你可能想知道为什么会这样,但我想这仅是众多无法理解的量子事实之一,没有经典的解释,是费曼所提及的量子现象之一:“因此理论物理已经放弃(解释)它了。”
虽然无法理解,但它是一个实验事实,无论我们做什么来减小Δx,都无法避免地导致Δv增加。同样的,任何减小Δv的方式都会导致Δx的增加。我们越想固定粒子的位置,它的速度越是不确定,反之亦然。
这是简略的说法,但海森伯将他的不确定原理,更为精确地定量化了。不确定原理认为Δv、Δx和粒子质量的乘积总是大于普朗克常数h。
mΔvΔx>h
我们来看它是怎样运作的。假设我们非常仔细地调节粒子,让Δx非常小。这使得Δv足够大,从而它们的乘积大于h。我们使Δx变得越小,Δv就必须越大。
为什么在日常生活中,我们无法注意到不确定原理呢?当你开车时,仔细观察速度计,你是否会体验到位置上的模糊性呢?或者当你查看地图想知道你在哪里时,速度计是否会疯狂地运转呢?当然不会,但这是什么缘故呢?不确定原理并不是有所偏爱,它适用于任何事物,包括你和你的小汽车,如同对电子一样。答案涉及出现在公式中的质量和微小的普朗克常数。对电子而言,极小的质量值相应于极小的h值,因此组合的Δv和Δx必须非常大。然而相对于普朗克常数来讲,小汽车的质量非常大。于是Δv和Δx都可能非常小而不违背不确定原理。你现在可以赞赏为什么自然界不为我们的大脑准备不确定性了,因为没有必要。在日常生活中,我们从未遇到足够轻的物体,以至于不确定原理起作用。
这就是海森伯的不确定原理:一个最终不可逾越的障碍,保证了任何人不能因懂得够多而能预测未来。我们会在第15章中重新回到不确定原理的讨论。
零点运动和量子晃动
仅1厘米见方的一只盒子,里面充满了非电抗性的氮原子,将它加热到非常高的温度。由于热量的存在,使得粒子飞来飞去,不断地相互碰撞,再撞到盒壁上弹回,频繁的碰撞产生了盒壁上的压强。
按照通常的标准,原子运动得很快:平均速度大约是每秒1500米。接下来冷却气体。由于热量被移除了,能量渐渐枯竭,原子的运动慢下来了。如果我们继续移走热量,气体最终会被冷却到尽可能低的温度——绝对零度,或者大约是-273.16°[41]。由于原子丢失了它们的能量而静止下来,盒壁上的压强消失了。
至少在假想中,这是可以发生的。但是在推理中,人们忽略了不确定原理。
进一步考虑下述问题,我们如何知道目前情况下原子的位置呢?事实上,每个原子都被限制在盒内,而且盒子的尺寸只有1厘米。显然,位置的不确定度Δx小于1厘米。想象这一时刻,热量被移尽了,所有的原子都静止了。任何原子的速度为零,没有不确定度。换句话说,Δv为零,但这是不可能的。如果正确,那将意味着mΔvΔx同样为零,这显然小于普朗克常数。从另一个角度说,如果每个原子的速度为零,它们的位置将无限地不确定,但事实并不是这样,原子都在盒内。因此,甚至是在绝对零度的情况下,原子也不能完全地停止它们的运动;它们会继续从盒壁上弹开并施加压力。这是量子力学中无法预期的可能性之一。
当一个系统被抽走足够多的能量(温度为绝对零度情形),物理学家称它处于基态。基态中剩余的涨落运动,通常称为零点运动,不过物理学家布莱恩·格林(Brain Greene)为它杜撰了一个更具描述力的口语名称,他称之为“量子晃动”。
粒子的位置并不是唯一晃动的东西。依据量子力学,任何可以晃动的事物都在晃动。另一个例子是真空中的电场和磁场。振动的电场和磁场存在于我们周围,以光波的形式充满空间,甚至在黑暗的屋子里,电磁场以红外波、微波和各种电波的形式振动。但是在科学允许的范围内,如果我们继续使屋子变暗,移去所有的光子会怎么样呢?电场和磁场继续做量子晃动。“一无所有”的空间是剧烈地振动着、振荡着和晃动着的环境,永远无法安静下来。
任何人在了解量子力学之前,他们都知道“热晃动”,它使得任何事物涨落。例如,加热气体引起分子的随机运动的增加。甚至当真空被加热时,它充满了晃动的电场和磁场。这和量子力学没有一点儿关系,在19世纪就为人所熟知了。
量子晃动和热晃动在某些方面彼此相似,其他方面则不同。热晃动是非常显著的,分子、电场和磁场的热晃动,反馈到你的神经末梢,使你感觉到温暖。同时它们也可以是非常有害的。例如,电磁场热晃动的能量,可以被转移到原子中的电子,如果温度足够高,电子可以从原子中发射出来,与此形成的能量可以使你燃烧,甚至化为气体。相比之下,虽然量子晃动是令人难以置信地充满活力,但是它们不引起任何痛苦,它们不会反馈到你的神经末梢,也不会破坏原子。这是为什么呢?因为需要足够的能量才能使原子离子化(把电子击出)或者激起你的神经末梢的反应,但是从基态中转移出的能量太小,因此这一切都是不可能的。量子晃动是当系统有着最低能量时所剩余的东西。虽然它惊人地剧烈,但是它丝毫没有热涨落的破坏效应,因为它们的能量是一种“不可用能”。
黑魔术
对我而言,量子力学最奇异的魔幻之处是干涉。我们回到本章开头处所描写的双缝实验。它有三个要素:光源、有着两条狭缝的平坦障碍物和一个光落在上面能闪光的荧光屏。
我们开始做这个实验,挡住左边的狭缝,结果得到的是屏上毫无特点的光点。如果减弱光的强度,我们发现光点实际上是由单个光子产生的闪光的集合。闪光是无法预测的,但当有很多闪光时,多个光点构成了一个图案。
如果我们打开左边的狭缝,挡住右边的狭缝,屏上的图案除了向左发生了微小的移动之外,几乎没有发生变化。
当我们同时打开两条狭缝时,令人吃惊的事情发生了。并不是仅将穿过左侧的光子和穿过右侧的光子加起来,而形成一个更强但仍然毫无特色的光斑,与此相反,我们的做法导致了一个新型的斑马条纹。
关于新图案的一个非常奇怪之处是,即使在单缝时的闪光相同的区域,也存在没有光子到达的暗条纹。选取中央暗条纹中的一点X。当每次只有一个狭缝打开时,光子轻易地通过它并到达X。然而当打开两个狭缝时,产生了光子流不能到达X处的反常效应。为什么打开两个狭缝反而降低了光子到达目的地的可能性呢?
想象一群喝醉酒的犯人,他们摇摇晃晃地走过一个有着两扇门的地牢到外面去。狱卒很细心,从不会打开一扇门,由于某些犯人喝醉了酒,可能会偶然地找到出路。但是两扇门都打开时,他会感到不安。因为当打开两扇门时,由于某种神秘的魔法,阻止醉汉逃出去。当然,这并不是对真实的犯人所发生的情形,但它是量子力学有时会预测的一类事情。
当光被看作粒子时,这个效应是异乎寻常的,然而将光看作波就很普通了。从两个缝发出的两列波在某些点相互加强,某些点相互抵消。在光的波动理论中,暗条纹是反相消所导致的,要不然称作是相消性干涉。现在仅有的问题是光有时候确实像粒子。
量子力学中的量子
电磁波是振动的一个例子。空间中每一点的电场和磁场以一定的频率振动,频率依赖于辐射的颜色[42]。自然界中还有许多其他的振动,下面是几个常见的例子。
·钟摆。钟摆来回地摆动,它完成一个完整的摆动大约需要1秒钟。这样的摆动频率是1赫,或者说是每秒1周。
·通过弹簧悬挂在天花板上的重物。如果弹簧较硬,那么振动的频率可达好几个赫。
·振动的音叉或者小提琴的弦,均可达到几百赫。
·电路中的电流,可以达到更高的振动频率。
通常人们将振动的系统称为振子。振子具有能量,至少当它们振动时是这样。在经典物理学中,振子的能量可以取任意值。我在这里所指的是,你可以按照你的喜好以一个光滑的斜面方式取所期待的任何值。下图表示了能量随着你所想象的斜率而增大[43]:
然而事实证明,在量子力学中能量以不可分割的台阶形式增减而出现。当你试图逐渐增加振子的能量时,所得到的结果是一架楼梯而不是光滑的斜坡,能量只能以能量量子的倍数增加。
量子单位的大小是多少呢?这依赖于振子的频率。规则与普朗克和爱因斯坦发现的光量子规则完全相同:能量量子E等于振子的频率f乘以普朗克常数h。
E=hf
对普通振子而言,例如钟摆,频率不是非常大,台阶的高度(能量量子)非常小。在这种情况下,阶梯图形是由这样的微小台阶组成的,它像一个光滑的斜坡。这就是你永远无法在日常经验中注意到能量量子化的原因。但电磁波可以有非常大的频率,台阶可以非常高。事实上,正如你可能已经推测到的,增加一个台阶高度的电磁波的能量,等同于把一个光子加到光束中。
对于一个仅有经典装备的大脑而言,能量只能以不可分割的量子增加的事实,似乎不符合逻辑,但这确实是量子力学所蕴含的结果。
量子场论
拉普拉斯在18世纪关于世界的图景是冷冷清清的:粒子,只有粒子,在牛顿体制的方程所要求的轨道下,不可变更地运动着。我希望我可以报告,现今的物理学为实在提供了一个温和的、模糊的图景,但恐怕我难以做到,依然只有粒子,但它有了现代的变形。决定论铁一般的规则已经被量子随机性的任意规则所代替。
代替牛顿运动定律的新数学框架称为量子场论,在它的支配下,自然界中的所有基本粒子从一点移动到另一点,碰撞、分裂和重组。量子场论是由世界线组成的巨大网络,连接着不同的事件(时空点)。这个由点和线组成的巨大的蜘蛛网的数学无法用外行的语言,来轻易地解释,但是它的要点还算简单明了。
在经典物理中,粒子沿着确定的轨道从时空中的一点运动到另一点。量子力学为它们的运动引入了不确定性。尽管粒子沿着不确定的轨道,我们仍可以认为粒子在时空点之间运动。这些模糊的轨道称为传播子。我们通常用时空事件之间的线来代表传播子,但这仅仅是因为我们无法画出真实的量子粒子的不确定性运动。
接下来要说的是相互作用,它告诉我们粒子相遇时会有什么样的行为。基本相互作用的过程称为角点。角点就像路中的分岔点,但接下来不是选择其中一条路或是另外一条,粒子分裂成两个粒子,每一个走一条分支。关于角点最著名的例子是由带电粒子发射光子。在没有任何警告的情形下,一个电子突然自发地分裂成一个电子和一个光子。[44](在传统上,我们将光子的世界线画成波浪线或是虚线。)
这是产生光的基本过程:晃动的电子分裂出光子。
存在包含其他粒子的多类角点。有一种粒子的名字叫胶子,它被发现存在于原子核之中。一个胶子有分裂成两个胶子的本领。
任何可以向前进行的事物同时也可以逆向反演,这意味着粒子可以聚合到一起。例如,两个胶子可以聚合到一起形成一个胶子。
理查德·费曼告诉我们如何结合传播子和顶点,来形成更为复杂的过程。例如,有一个费曼图表明了光子从一个电子跃迁到另一个电子,描述了电子如何碰撞和散射。
另一个图表明了胶子如何形成复杂的、有黏滞性的纤维材料,从而将原子中的夸克结合在一起。
给定初始点,包括一组粒子的位置和速度,牛顿力学试图回答有关预测未来这个古老的问题。量子场论用不同的方式提出了同样的问题:假定原来的一组粒子以某种确定的方式运动,那么不同结果的概率分别是多少呢?
然而,简单地说自然界是随机性的(而不是决定性的),还不是答案的全部。尽管拉普拉斯不喜欢这个想法,但他还是认为世界有一点儿随机性。他可能是这样进行推理的:粒子的行为不是决定性的,恰恰相反的是,由过去(两个电子)到未来(两个电子加上一个光子)的每一个明确的路线的概率都为正值。[45]接下来,依照概率论的通常规则,拉普拉斯将不同的概率相加,得到最终的总概率。对于用经典装备大脑的拉普拉斯来说,这种推理是一种完美的见识,不过它并不是事物真实的运作方式。尽管有点儿怪,正确的方法应是:不要试图去干扰克它,仅仅接受它就可以了。
正确的规则是奇异的新“量子逻辑”中的一个结果,是在紧随海森伯和薛定谔之后,由伟大的英格兰物理学家保罗·狄拉克(Paul Dirac)发现的。费曼追随着狄拉克的引导,给出了计算相应费曼图概率幅的数学规则。而且,你可以将所有费曼图的概率幅加起来,但并不是得到最终的概率。事实上,概率幅不需要是正数,它们可以为正,也可为负,甚至还可以是复数。[46]
但是,概率幅不是概率。比如说,为了得到两个电子变为两个电子加上一个光子的总概率,你首先要将所有费曼图的概率幅加起来。接着,依照狄拉克抽象的量子逻辑,你得到了结果,然后将其平方![47]所得结果总是正的,它是这个特定输出的概率。
这是位于量子装备库核心的一个奇异规则。拉普拉斯曾经认为这是胡说八道,甚至爱因斯坦也认为它是没有意义的。但是,量子场论是一种了解万物的不可思议的武器装备,对包括基本粒子及其所组成的原子核、原子和分子在内的万物作出了惊人的精确的解释。正如我们在引言中所提到的,量子物理学家必须用新的逻辑规则来重新装备他们自己。[48]
在结束本章之前,我想回到深深困扰爱因斯坦的那件事。我并不确切知道,但我猜测它不得不涉及概率陈述的终极意义。我感到困惑的是,对于这个世界它们真正说了些什么呢?就我所知的而言,它们没有提到非常明确的东西。我曾经写了下面这个非常短的故事,最初是包括在约翰·布罗克曼(John Brockman)的《我们所信仰但无法证明的事物》这本书中,它表明了这个观点。故事是“与反应迟钝的一个学生的谈话”,是有关一个物理学教授和不得要领的学生的讨论。当我写这个故事时,我把自己想象成学生,而不是教授。
学生:您好,教授。我发现了一个问题。我打算做一个有关随机性的实验,就是投掷硬币嘛,这东西应该能检验您所教的课程,但有点不对劲,失效了。
教授:噢,我很高兴你对此感兴趣。那你做了什么呢?
学生:我将这个硬币投掷了1000次。您记得吗,您告诉我们得到字面的概率是1/2。我想这意味着,如果我投掷1000次,那么应该得到500次字面。但结果并非如此,我得到了513次。这是怎么回事呢?
教授:是啊,这是由于你忘记了误差范围。如果你将硬币投掷一定次数,那么误差范围大约是投掷次数的平方根。投掷1000次的误差范围大约是30,因此你的结果在误差范围之内。
学生:哎呀,我现在懂了。每当我投掷1000次时,得到字面的次数总是位于470~530之间,每一次都是!噢,那么我现在可以依靠这个事实了。
教授:不,不!它仅仅意味着你很可能会得到470~530之间的某个数。
学生:您指的是我可以得到200次字面吗?或者是850次字面吗?甚至全部都是字面呢?
教授:可能性很小。
学生:可能问题在于我的投掷次数不是足够的多。我应该回去尝试1 000 000次吗?情况会好一些吗?
教授:很可能。
学生:噢,教授,赶快告诉我可以信赖的一些东西。您尽是用可能性来告诉我可能意味着什么。能否不用“可能”这个词来告诉我可能性究竟是什么意思。
教授:嗯。下述的讲法可能比较好:这意味着如果答案落在误差范围之外,我会感到吃惊。
学生:上帝呀!您指的是您教授给我们的所有有关统计力学、量子力学和数学概率论,所有这一切都意味着,如果它失效,您只是个人感到吃惊吗?
教授:噢,嗯……
如果我投掷100万次硬币,我可以确信我不会得到所有的字面。我不是一个赌徒,但我如此肯定,以至于我可以用我的生命和灵魂来打赌。我全部豁出去了,以一年的薪水来打赌。我完全肯定概率论中的大数定律不会失效,使我抵御风险。所有科学都基于它。但是我无法证明它,也不是真正地知道它为什么有效。这可能是爱因斯坦为什么说“上帝不掷骰子”的原因,而且很可能是。
我时常听物理学家们声称爱因斯坦不懂量子力学,因此为朴实的经典理论耗费时间,我非常怀疑这是真的。他反对量子力学的论点是极其奥妙的,他的那篇论文是物理学中最深刻的、引用达到最高的论文之一。[49]我猜想爱因斯坦所具有的某种不安,正是困扰那个反应迟钝的学生之处。难道对于真实性的终极理论,我们就没有比对实验结果的惊讶度更为具体的东西了吗?
我向你们展示了量子力学对仅有经典装备的大脑所产生的某些似非而是、几乎无逻辑的东西,不过我猜想你并不为此而完全满意。事实上,我希望你们不满意。一个实际的补救方法是沉浸在一本好的量子力学教材当中去几个月,并认真演算。只有非同寻常的怪才,或者是在一个极其特殊的家庭中长大的人,才能自然地具有新装备来理解量子力学。记住,连爱因斯坦最终也没能干扰克它。
第5章 更好的码尺
有一天在斯坦福大学的食堂里,我发现我教授的“医学预科”物理班的许多学生围在一张桌子上学习。我问道:“伙计们,你们正在学习什么呢?”他们的回答让我大吃一惊。原来他们正在背诵教科书封面上的常数表,背到最后一位小数点。[50]这个表包括如下的常数,除此之外还有其他二十几个。
h(普朗克常数)=6.626 068×10-34米2·千克/秒
阿伏伽德罗常数=6.0 221 415×1023
电子电荷=1.60 217 646×10-19库仑
c(光速)=299 792 458米/秒
质子的直径=1.724×10-15米
G(牛顿常数)=6.6742×10-11米3·秒-2·千克-1
医学预科生在他们的其他科学课上,一直在训练记忆大量的材料。他们都是很好的物理学生,却常常试图用学习生理学的方法来学习物理学。事实是物理学的记忆任务是非常少的。我怀疑许多物理学家能否粗略地说出这些常数值呢?
这引起了一个非常有趣的问题:为什么自然界的常数是这些棘手的数呢?为什么它们不能是像2或5甚至是1那样简单的数呢?为什么它们总是如此之小(普朗克常数、电子电荷)或是如此之大(阿伏伽德罗常数、光速)呢?
答案与物理学关系不大,但确与生物学密切相关。以阿伏伽德罗常数为例,它代表的是一定量气体中所含的分子个数。是多少气体呢?答案是19世纪早期的化学家可以轻易地用来工作的一定量气体;换句话来说,它可以被装在一个尺寸和人体大小相近的烧杯或其他容器中。阿伏伽德罗常数的真实数值和人体中分子数的关系要比它和物理学中深层次的原理的关系要密切得多。[51]
另外一个例子是质子的直径,为什么它是如此之小呢?答案再次与人体生理学有关。表中的数值都是用米给出的,然而1米是多少呢?米是英制码的公制版本,码大约是当一个人伸展开双臂时,从他的鼻子到指尖的距离,它很可能是测量布或绳子的有用单位。从质子直径之小,得到的教益是,需要很多质子才能形成人的胳膊。从基础物理的观点来看,这个数没有任何特别之处。
那么为什么我们不去改变单位,来使得这些数更容易记忆呢?实际上,我们已经这样做了。例如在天文学中,光年通常被用来作为距离的尺度(我讨厌听到光年被误用为时间的单位,就像有些人会说:“嘿,离我上次见到你已有几光年了”)。当以每秒光年为单位来表达光速时,它不是很大,事实上,它非常小,大约只是3×10-8。如果我们将时间的单位从秒改为年,会怎么样呢?由于光需要精确的一年才能走完一光年,因此光速是每年1光年。
光速是物理学中最基本的量之一,因此采用光速等于1的单位是有意义的。但诸如质子半径之类并不是非常基本的东西。质子是由夸克和其他粒子组成的复杂物体[52],那么为什么要给它们以优越的位置呢?从最深层和普适的物理定律来选择常数将会更有意义。如何决定这些定律是没有什么异议的。
·宇宙中任何物体的最大速度是光速c。这个定律不仅是关于光的定律,而且是有关自然界中一切事物的定律。
·宇宙中任何物体之间相互吸引,吸引力等于它们的质量与牛顿常数G的乘积。所有物体指的是一切物体,没有任何例外。
·对宇宙中任何物体而言,质量及位置与速度的不确定度的乘积永远不小于普朗克常数h。[53]
这里用楷体的词是为了强调这些定律的所有特性。它们适用于任意和任何事物,即所有的事物。事实上,自然界中的这三条定律堪称是普适的,远超过诸如描述质子这样的某种特定粒子性质的核物理定律。这似乎是平庸的,但物理结构中最深刻的见解之一,产生于1900年,普朗克认识到长度、质量和能量的单位可以作特定选择,以使三个基本常数c、G、h都等于1。
基本的标尺是普朗克长度,它远比米小,甚至比质子的半径还要小。事实上,它大约是质子半径的万亿亿分之一(在米制单位中,它大约是10-35)。即使质子被放大到太阳系的大小,普朗克长度也不会大过病毒的尺寸。普朗克因意识到这个无法想象的微小尺寸,必然在物理世界的任何终极理论中起到基本的作用,而获得了永久的声誉。他不知道物质的最小砖块究竟是什么,但他已猜到物质的最小砖块将是“普朗克尺寸”的。
为了使c、G和h等于1,普朗克要求时间的单位是难以想象的小,即10-42秒,等于光穿过1个普朗克尺度所需要的时间。
最后,还存在一个普朗克质量。假定普朗克长度和普朗克时间是如此不可思议的小(相对于通常生命所取的单位而言),那么自然要求普朗克单位下的质量比任何普通物体的质量小得多。然而你错了,事实证明,就生物尺度而言,物理中质量的最基本单位不是非常小:普朗克质量大约是100万个细菌的质量,大约与肉眼能看到的最小物体,例如一粒尘埃相同。
普朗克长度、普朗克时间和普朗克质量这些单位有着非比寻常的意义:它们是最小黑洞的可能大小、半衰期和质量。我们会在以后的章节中再回到这些讨论。
E=mc2
取一个壶,将它装满冰块并塞紧壶口,在厨房的天平上称出它的质量。接下来,把它放在火炉上加热,使冰融化为热水,重新称量它。如果你认真地执行此事,确保没有任何东西进入壶中或从中逃出,那么最终的质量将和原来的一样,至少在很高的精度上是这样。但是,如果你能够将测量精确到万亿分之一,就会注意到差异了:热水比冰要稍微重些。用不同的方式来说,加热使质量增加了万亿分之几千克。
这里发生了什么呢?我们知道,热量是能量的一种。但根据爱因斯坦的说法,能量是质量,因此在壶中的成分中加入热量就相当于增加质量。爱因斯坦著名的方程E=mc2表明质量和能量是以不同的单位来表示同一种事物这个事实。从某种意义上来讲,就像将米转化为千米;用千米表示的距离是用英里表示的距离的1.6倍。在质量和能量的例子中,转化因子是光速的平方。
物理学家关于能量的标准单位是焦。点亮一个100瓦的电灯1秒钟需要的能量是100焦。1焦是质量为1千克的物体以1米/秒的速度运行时所具有的动能。日常生活中,一个人每天的食物,大约提供了1000万焦的能量。同时,质量的国际标准单位是千克,它比1夸脱水的质量少一点儿。[54]
E=mc2告诉我们质量和能量可以相互转化的概念。如果让少许质量消失,那么它常常会以热的形式转化为能量,但并不是必然如此。想象1千克质量消失了,转化为热。为了知道产生了多少热量,用1千克乘以一个非常大的数c2,结果是1017焦,你可以依靠它生活300万年,或者你可以用它来制造一个非常大的原子武器。幸运的是,把质量转化为其他形式的能量是非常困难的,但正如曼哈顿计划[55]所证明的那样,这是可以做到的。
对一个物理学家而言,质量和能量这两个概念之间的联系过于密切,我们几乎不去区分它们。例如,电子的质量常常被作为电子伏特的特定数值,电子伏特对原子物理学家来说是非常有用的能量单位。
具备了这点儿知识,我们回到普朗克质量,即一粒尘埃的质量,我们同样也可以称之为普朗克能量。想象这一小块儿的质量通过某种新发现被转化为热能,大约和一箱汽油产生的能量相同。你可以用10个普朗克质量来开车穿越美国。
普朗克尺寸的物体是如此不可思议地小,永远无法直接观测它们,这个无法克服的困难是理论物理学家感到沮丧的根源。我们能对这些问题发问这个事实,就足以证明人类想象力的成功了。然而我们正是在这些遥不可及的世界里,寻找解决黑洞佯谬的答案,因为普朗克尺寸的信息比特,犹如墙纸那样紧贴在黑洞的视界处。事实上,黑洞的视界是自然定律所允许的最为集中的信息形式。不久我们就会了解到,信息这个术语以及它的孪生概念熵,究竟意味着什么。接下来我们就处于一个有利的位置,来了解黑洞战争的一切。但是我首先想解释的是,为什么量子力学破坏了广义相对论最为可靠的结论之一:黑洞的永恒本性。
第6章 百老汇之约
我和理查德·费曼的第一次谈话是在曼哈顿上区的百老汇的西区咖啡馆中,那年是1972年,那时我32岁,是一个相对不知名的物理学家;费曼53岁,纵使他已不处于全盛时期,老狮王毕竟还是狮王,他依然是个很难对付的大人物。他到哥伦比亚大学做一个关于部分子的新理论的演讲。部分子是费曼关于诸如质子、中子和介子这样一些亚原子核粒子的假想组分(部分)所使用的术语,如今我们称它们为夸克和胶子了。
当时,纽约是高能物理的主要中心,焦点是哥伦比亚大学的物理系。哥伦比亚大学的物理有着光荣和著名的历史。拉比(I.I.Rabi)是美国物理学的一位先驱者,确立了哥伦比亚大学成为最有威望的物理机构之一,直到1972年,哥伦比亚的声望达到了顶峰。耶什华大学的贝尔弗科学研究生院的理论物理规划[56],至少说来是不错的,我当时是那里的教授,但哥伦比亚毕竟是哥伦比亚,贝尔弗的地位远不及它那样崇高。
费曼的演讲如同预期的那样,引起了巨大的震动。他在物理学家的心灵和智慧当中占有一个极为特殊的位置。不仅因为他是有史以来最伟大的理论物理学家之一,而且因为他是所有人的英雄。他是演员、小丑、鼓手、坏男孩、攻击传统理念的人和智慧出众的人,他让一切看起来都很简单。其他人经过几个小时的艰难的数学计算来回答的一些问题,他用20秒就能说明为什么答案是显而易见的。
费曼自视极高,不过他仍有足够的兴趣来此地聚会。几年之后,我和他成为好朋友,不过在1972年,他是一个名人,而我是从第181街道北部的穷乡僻壤来的,一个不起眼的追星族。我乘坐地铁在演讲前2个小时到达了哥伦比亚,希望能和这位伟大的人物说几句话。
理论物理系在浦品楼的第19层[57]。我断定费曼会到那里溜达。我首先看见的人是李政道,他是哥伦比亚大学物理系的士林翘楚[58]。我问他费曼教授是否在附近,李政道友好地反问:“你想做什么?”我回答道:“是这样的,我想问他有关部分子的一个问题。”李政道又说道:“他很忙。”就这样结束了交谈。
故事本来将要终结,我忽然心有灵犀一点通。当我走进洗手间时,马上发现费曼恰好站在小便池前面。我蹑手蹑脚地靠近他,嗫嚅着说:“费曼教授,我可以问您一个问题吗?”“好,不过得先让我解决完现在的事情,接着我们可以到他们给我准备的办公室里去,是有关什么方面的问题呢?”那时那刻,我发现实际上我并没有关于部分子的问题,于是我编造了一个有关黑洞的问题。黑洞这个术语是由约翰·惠勒4年前杜撰的。惠勒曾经是费曼的论文指导老师,但费曼告诉我,关于黑洞他几乎一无所知。我从朋友大卫·芬克尔斯坦(David Finkelstein)那里了解到了一点儿极为有限的知识,他是黑洞物理学的先驱者之一。1958年戴夫写了一篇有影响力的论文,以此来说明黑洞视界是一去不复返之点。在我所了解的事情当中,黑洞有一个位于其中心的奇点和围绕着奇点的视界。戴夫同时还向我解释了,为什么没有东西能从视界之内逃出。我最终知道的事情是,虽然我不清楚我是如何了解它的,一旦黑洞形成,它无法分裂或消失,两个或两个以上的黑洞可以合并在一起,从而形成一个更大的黑洞,但永远没有东西能使一个黑洞分裂成两个或两个以上的黑洞。换句话说,一旦黑洞形成,那么将没有办法来摆脱它。
大约在此期间,年轻的史蒂芬·霍金对黑洞的经典理论发起了革命。他最重要的发现之一,是黑洞视界面积永不减少这个事实。霍金和他的合作者詹姆斯·巴丁(James Bardeen)、巴登·卡特(Barndon Carter)用广义相对论,得到了支配黑洞行为的一组定律。新定律与热力学定律(有关热的定律)异乎寻常的相似,尽管这个相似性被认为是一个巧合。有关面积永不减少的规则,是热力学第二定律的一个类比,它声称系统的熵永不减少。在费曼的演讲期间,我怀疑自己是否听说过这个工作,甚至是霍金这个名字,然而霍金关于黑洞动力学的定律最终对我的研究产生了重要的影响,长达20多年。
无论如何,我想向费曼提的问题是,量子力学是否会使黑洞通过分裂为小黑洞的方式来使其瓦解呢?我想这有点儿类似于将非常大的原子核分裂成其他小原子核。我匆忙地向费曼解释,为什么我认为它应该发生。
费曼说他从未考虑过此事,而且逐渐开始厌倦引力这个问题。量子力学对引力的效应,或者说引力对量子力学的效应太微弱,从来没有被观测到。他并不是认为这个问题,在本质上是没有意思的,而是认为没有某些可观测的效应来引导理论,因此猜测它的运作方式是毫无希望的。他说曾在几年前考虑过这个问题,不想再重新开始为此事而思索了。他猜测可能需要500年时间,量子引力才能被理解。费曼说无论如何他需要放松一下,来准备一个小时之后的演讲。
演讲百分之百是费曼式的。他的风采充满了整个舞台,用布鲁克林的腔调和肢体语言,这些夸张的手段来演示每一点。听众被迷住了。他告诉我们如何用简单直观的方式来考虑量子场论中有难度的问题。几乎其他人都用另外一种旧的方法来分析他所处理的问题。旧方法很困难,但他发现了一个技巧,使得它们都变得非常简单,就是部分子的技巧。费曼挥舞着他的魔杖,所有的答案都跳出来了。令人感到啼笑皆非的是,这旧的方法是基于费曼图的。
对我而言,演讲最精彩的部分是当李政道打断费曼的演讲,问了一个问题,或者更像用问题的方式变相地做了一个陈述。费曼声称某种特定的图,它称为Z图,永远不会出现在他的新方法中,这简化了问题。李政道问道:“是不是在某些用矢量和旋量描写的理论当中,Z图并不是给出零结果呢?但我想它大概可以被解决。”演讲厅如同墓地一样安静。费曼看着这位士林翘楚5秒钟,接着说:“搞得定它。”然后继续做演讲。
演讲之后,费曼走到我旁边问道:“嗨,你叫什么?”他说考虑了我的问题,想和我讨论。他问我是否知道我们随后可以见面的一个地方吗?就这样我们到西区咖啡馆见面了。
我们随后将回到咖啡馆,但我首先需要将有关引力和量子力学的一切都告诉你们。
我想讨论的问题是与量子力学对黑洞的效应有关的。广义相对论是引力的经典理论。当物理学家用经典的这个词时,并不是指来自于古希腊,它仅仅指理论没有包括量子力学效应而已。我们对量子理论如何影响引力场所知甚少,但所知道的这一点与在空间以引力波传播的微小的扰动有关。我所了解的这些扰动的量子理论的大多数是费曼做出的贡献。
我们在第4章中已了解到,上帝没有理睬爱因斯坦不玩骰子的要求。当然,问题的关键是,经典物理学中确定的东西,在量子物理学中变得不确定了。量子力学从不告诉我们将发生什么;它告诉我们这个或那个将要发生的概率。确切地说,一个放射性的原子什么时候会衰变是不可预测的,但量子力学可以告诉我们的是,它很可能会在接下来的10秒钟发生衰变。
诺贝尔物理学奖得主默里·盖尔曼(Murry Gell-Mann)从怀特(T.H.White)的《从前和将来的国王》那里借来句格言:“任何不被禁止的事情都是欲罢不能的。”然而在大多数情形下,经典物理学中有许多不可能发生的事件,在量子理论中是可能发生的。不是不可能,而仅是这些事件未必会发生。然而无论多么不太可能,如果你等足够长的时间,那么它们最终将会发生。因此,任何不被禁止的事情都是欲罢不能的。
典型的例子是一种被称为隧道效应的现象。想象一辆停在山顶的汽车。我们忽略所有不相关的东西,例如,摩擦力和空气阻力。我们同时假定司机不刹车,那么汽车将自由下滑。很显然,如果汽车停在最低点,它就不会突然开始运动。无论朝哪个方向运动都是上坡,而且如果汽车开始时处于静止状态,它将没有能量去上山。如果我们不久之后发现汽车越过山峰之后再往下滑,那么只有假定:或者我们推了它一程,或者它以某种其他方式获得了能量。在经典力学中,汽车自发地跃过山峰是不可能的。
但是记住,任何不被禁止的事情都是欲罢不能的。如果汽车是量子力学的(所有的汽车确实都是如此),那么没有什么能阻止它突然出现在山峰的另一侧。这种现象未必会发生,对于像汽车这般大而重的物体,是非常、非常不大可能,但并不是不可能。因此,如果有足够的时间,那么它将是欲罢不能的。如果等待足够长的时间,我们将会发现汽车从山峰的另一侧滑下。由于汽车就像穿过山峰中的一条隧道一样,因而这种现象称为隧道效应。
对于一个如同汽车般重的物体而言,它穿过的概率是如此之小,以至于(平均来讲)需要难以计数般长的时间才能使汽车自发地出现在山峰的另一侧。为写下一个足够大的数字来表示这个时间,需要一个很多位的数,即使每一位数字写成质子大小,并让它们紧紧地堆积在一起,也远超过整个宇宙的大小。然而,完全相同的效应可以允许一个α粒子(两个质子和两个中微子)穿过原子核,或者是电子穿过回路中的空隙。
在1972年的那天,我想,尽管经典黑洞有固定的形状,然而量子涨落可以使视界的形状发生微小的晃动。一般情形下,非旋转黑洞的形状是一个理想的球面,但量子涨落应该会使它变形,简要地说是球面将变平或变扁。进一步而言,涨落常常会是很大的,以至于黑洞变形成为一个由细颈来连接的一对较小的近似的球面,在细颈处发生分裂将会非常容易。重的原子核以此种方式来自发地分裂,那么为什么黑洞不可以呢?从经典意义上来讲,它不可能发生,就像小汽车不能自发地跃过山峰一样。然而真的是绝对禁止的吗?我找不到它应该这样的理由。我认为等待足够长的时间,黑洞最终会分裂为两个较小的黑洞。
我关于黑洞衰变的想法
现在回到西区咖啡馆。在咖啡馆里,我一边慢慢地啜饮着啤酒,一边等了费曼大约半个小时。我对此考虑得越多,它似乎越有意义。黑洞无法通过量子隧道效应来瓦解,首先它分裂成两部分,接着是四部分,八部分,最终分裂成大量的微观组分。按照量子力学的准则,黑洞的永恒存在是没有任何意义的。
费曼在一到两分钟前走进了咖啡馆,朝我坐着的地方走过来。我怀着见大人物的心情,因此又点了两杯啤酒。我还没来得及付账,他拿出钱包,将所需要支付的钱放在桌上。我不清楚他是否留下了小费。我啜饮着啤酒,但是我发现费曼的酒杯从未离开桌子。我开始重新审视我的论点,认为黑洞最终会分裂成微小的碎片。这些碎片会是什么呢?虽然没有明说,唯一合理的答案是诸如光子、电子和正电子这样的基本粒子。
费曼认可我的观点,认为没有什么能够阻止这种情况的发生,但他认为我的图景是错误的。我形象地认为黑洞首先会分裂成几乎等同的两部分。每一部分再分裂成两半,直到所有的部分都是微观尺度为止。
费曼关于黑洞衰变的想法
问题是,需要巨大的量子涨落才能使一个大黑洞分裂成两半。费曼感到存在一个更为合理的图景,即视界分为一块几乎等同于原来视界大小的部分,另一微观部分飞走了。当这种过程重复进行时,大黑洞会逐渐收缩,直到一无所有。这听起来是正确的,视界的微小部分脱离出去似乎比黑洞分裂为两个大的部分的可能性更大。
谈话大约持续了一个小时。我不记得我们说再见了没有,也不记得我们有没有定下计划,去追寻这个想法。我晋见了狮王,他没有让我失望。
如果我们对这个问题思考得更为深入一些,可能会意识到引力很可能会将这些微小的部分拉回视界,某些发射的部分可能会与落下的部分相碰撞。视界正上方是一个复杂的碰撞区域,由于反复碰撞,它可能会因此而升高温度。我们甚至可能认为视界正上方的区域是由沸腾的粒子形成的一个热环境。同时我们可能想到这加热的质量的行为如同任何热的物体一样,它会以热辐射的形式辐射热量。但我们没有这样做下去,费曼回到了他的部分子理论,我回到了是什么将夸克禁闭在质子内部的问题。
现在正是一个大好时机,我将确切地告诉你们信息是什么了。信息、熵和能量是三个不可分割的概念,这是下一章的主题。
第7章 能量与熵
能量
能量像一个模型拼盘。模型拼盘可以拼出人、动物、植物和岩石,能量也可以改变它的形式。动能、势能、化学能、电能、原子能和热能是能量可以呈现的许多形式当中的几种。它不断地从一种形式变到另一种形式,但有一样东西是不变的:能量是守恒的,能量所有形式的总和永不发生改变。
下面是有关能量形式改变的几个例子。
·西西弗斯的能量偏低。[59]因此,在他一次又一次将巨石推向山顶之前,他停下来吃一顿蜂蜜来使自己精神饱满。当巨石到达山顶时,这个囚徒眼睁睁地看着引力将石头拉回山底,只得再进行下一次。可怜的西西弗斯注定要永远将化学能(蜂蜜)转化成势能,接着再转化成动能。不过等一下,当巨石静止在山底时,动能又发生了什么变化呢?它转化为热量。一部分热量流进大气中和地下,西西弗斯也因此而受热。西西弗斯造成的能量转化的整个过程如下:
化学能→势能→动能→热能
·尼亚加拉瀑布中的水流获得速度。[60]流动的水饱含着动能,流向涡轮机口,使得转子旋转,电能产生了,通过电线流向电网。你可以画出这个过程中能量的转化形式吗?转化的整个过程如下:
势能→动能→电能
此外,某些能量被转化成无法利用的热能:从涡轮机中流出的水比流进的水温度高。
·爱因斯坦宣称质量是能量。当爱因斯坦说E=mc2时,他所指的是任何物体都有某种潜在的能量,如果它的质量以某种方式被改变,该能量可以被释放。例如,铀核最终会分裂成钍核和氦核。钍核与氦核的质量之和比最初的铀核的质量小一点儿。这微小的盈余质量会转化为钍核和氦核的动能,同时还产生一些光子。当原子静止下来,光子又被吸收时,盈余的能量便转变为热。
在能量的一切通常的形式当中,热量是最神秘的。什么是热量呢?它是类似于水一样的物质吗?或者它更像某种极为短暂的东西呢?在热的现代分子理论出现之前,早期物理学家和化学家认为它是一种行为像流体的物质。他们称它为燃素,想象它从热物体流到冷物体,使得热的物体变冷,冷的物体变热。事实上,我们现在仍然在说热流这个词。
但热量并不是一种新的物质,它只是能量的一种形式。将你自身缩小到分子的尺寸,在浴缸中环顾热水。你可以看到分子随机地运动着,熙熙攘攘地碰撞着,混乱地舞动着。让水冷却一下,再环顾你的四周:分子的运动缓慢多了。将它冷却到冰点,分子被固定在冰的晶体之中。不过即使在冰中,分子继续振动。只有当所有的能量被排走时,它们才停止运动(忽略量子零点振动)。就在这时,当水在-273.16℃或者在绝对零度时,温度再也不能进一步降低了。每个分子都被牢牢地固定在合适的位置,处于一个完美的晶格之中,所有混乱的、无序的运动都停止了。从热量到其他形式的能量守恒有时称为热力学第一定律。
熵
将你的宝马车停在雨林中500年,是一个糟透的做法。当你再回来时,发现宝马车成了一堆铁锈。这就是熵的增加。如果你让这堆铁锈再呆上500年,你很确定铁锈不会还原,成为一辆能正常运转的宝马车。这就是热力学第二定律,简而言之:熵增加。每个人都谈论熵,包括诗人、哲学家和电脑怪才,但它真正是什么呢?为了回答这个问题,需要更好地考虑宝马车和一堆铁锈之间的差异。它们都是由大约1028个原子组成的集合体,主要是铁原子(在铁锈的情况下,还要加上氧原子)。它们聚合到一起形成一个正常运转的汽车的可能性是多少呢?需要很多专门的知识才能说明它如何不可能。显然,你非常可能得到的是一堆铁锈,而不是崭新的汽车,也不会是原来的那堆铁锈。如果你反复地将原子分开,再将它们放在一起,你最终也许会得到一辆汽车,但更多的可能是你将得到铁锈堆。为什么会这样呢?汽车或铁锈堆的特征差异在哪里呢?
如果你想象可以将原子集合在一起的所有可能的方式,那么大多数组装所得的更像铁锈堆,只有很小一部分像汽车。即使那样,如果你将车盖打开往里看,很可能又会发现一些铁锈,不过组装方式中的更小一部分,会形成一辆能正常运转的汽车。汽车的熵和一堆铁锈的熵,与我们能辨认出铁锈堆和汽车的数目有关。如果你将小汽车的原子打散后重新组合,你将更可能得到一堆铁锈,因为组合成铁锈的方式要比组合成小汽车的方式多得多。
这里还有另外一个例子。类人猿不停地敲击键盘,尽管砰砰直响,但几乎总是打出杂乱无章的符号。它能够打出一个语法正确的句子的情况是罕见的,例如类人猿偶然打出了“我想用分号来仲裁我的斜边”这样的句子。少之又少的情况是,它打出了像“克努特国王的下颌上有个疣”这样有意义的句子。[61]更进一步地说,如果你把一个有意义的句子的字母混乱后重新组合,就像拼图游戏中的牌一样,结果几乎是混乱的。原因是什么呢?组合20或30个字母得到没有意义的句子的方式要比有意义的句子的方式多得多。英语字母表中有26个字母,但存在更为简洁的书写体系,它只利用两个符号,点和短划。严格地说,有3个符号,是点、短划和空格,但我们总可以用点和短划的某种特殊序列来代替空格,以使空格不再出现。无论如何,我们可以忽略空格,下面是描述克努特和他的疣的莫尔斯电码,[62]总共有65个符号。
由65个点或短划能组成多少不同的莫尔斯电码信息呢?你只要将2自身相乘65次,得到265,大约是千亿亿个不同的莫尔斯电码。
当信息用两个符号来编码时,这两个符号可以是点和短划、1和0,或者是其他一对,这些符号称为比特。因此,“克努特国王的下颌上有个疣”在莫尔斯电码下是一个65比特的信息。如果你想阅读本书的剩余部分,记住比特这个专业术语的定义是一个好主意,它的意思和你说的“我要拿一点儿咖啡到办公室”不同。比特是单个、不可分的信息单位,就像莫尔斯电码中的点和短划。
为什么我们要如此费力,将信息缩减到用点和短划,或者是0和1来描述呢?为什么不用序列0 1 2 3 4 5 6 7 8 9或者直接使用字母表中的字母呢?理由很简单,这样将使得信息更容易阅读,而且只需要更小的空间。
问题的关键是字母表中的字母(或者是10个通常的数字)是人类构建的,我们早已学习认识它们,并存储在我们的记忆中。但每个字母或数字本身,已经有大量的信息了,例如,字母A和B,或者是数字5和8之间,存在着错综复杂的差异。电报员和计算机科学家只依赖最简单的数学规则,他们更倾向于,事实上几乎被迫使用点和短划,或1和0的二进制码。事实上,为了给生存在遥远的恒星系上的非人类文明发送信息,卡尔·萨根(Carl Sagan)设计了一种采用二进制码的系统。[63]
我们回到克努特国王。这个65比特的信息有多少是有条理的句子呢?我真的不知道,可能有几十亿吧。但是无论有多少,它只有265当中难以想象的小的一部分。因此几乎确定的是,如果你取“克努特国王下颌上有个疣”中的65比特或是27个字母,搅乱它们的结果得到的将是乱语。不考虑空格,下面是我用斯克莱勃牌所得到的结果:[64]
H T K I D G E N C U O N N H T S R N I S A W A C H A I
假定你每次只把字母少许混乱一下。句子会逐渐丢失它的连贯性。“克努特国王有个疣下颌上”依然是可识别的。“克努特国王个有疣颌下上”同样也是。然而字母会逐渐变成一堆混乱的、没有意义的字母。有如此多的无意义的组合,以至于通向乱语的趋势是不可避免的。
现在我可以给出熵的定义了。熵是排列数目的测度,遵从某种特定的、可识别的判据。如果判据是存在65比特,那么排列的数目是265个。
不过在265比特的情况下,熵不是排列数,它恰好是65,也就是你将2相乘得到排列数的次数。数字2必须相乘起来得到给定数的数学术语称为它的对数。[65]于是,65是265的对数。因此,熵是排列数的对数。
在265种可能性当中,实际上只有一小部分有意义的句子。我们猜想有10亿个,为了得到10亿这个数,你必须将大约30个因子2相乘在一起。换句话说,10亿大约是230,或者等价地说,30是10亿的对数。因此得出结论,有意义的句子的熵大约只是30,远小于65。无意义的符号的混乱排列,比表述连贯句子的熵大得多。当你弄乱字母时,熵增加,这实在没有什么奇怪的。
假设宝马公司极度地提高了质量控制,从生产线上生产的汽车彼此完全相同。换句话说,假设有且只有一种原子排列才被认为是真正的宝马,那么它的熵是多少呢?答案是零。当宝马从生产线出来时,任何细节都已经确定。不论何时你确定了一种排列,就完全没有了熵。
热力学第二定律规定熵增加,它仅是以一种方式说明:随着时间的增长,我们趋向于失去细节。想象我们将一小滴墨汁放到一壶热水中。一开始,我们精确地知道墨汁的位置在哪里。墨汁的可能组态数目不是太大。但当我们看到墨汁扩散到水中时,关于单个墨汁分子的位置,我们开始知道得越来越少。我们所看到的是一个均匀的、浅灰色的一壶水,相应的排列数目已经变得非常大。我们可以耐心地等待,然而我们不会看到墨汁分子重新集聚到一起形成一滴墨汁。熵增加了,这就是热力学第二定律,事物趋向于令人乏味的均匀性。
这里还有另外一个例子,一个装满热水的浴缸。我们对缸中的水,了解了多少呢?假定它停在浴缸中的时间足够长,没有可观测的运动。我们可以测量缸中水的量(50加仑),也可以测量它的温度(40℃)。但是缸中充满了水分子,对于给定的条件,也就是50加仑(1加仑约4.55升)40℃的水,相对应的水分子的排列方式显然有很多。如果我们可以精确地测量每个原子,那么将可以知道得更多。
熵是不可观测的细节中所隐藏的信息的量度。因此,熵是隐藏着的信息。在大多数情形下,信息是隐藏的,因为它所涉及的东西太小而无法观测到,太多而无法跟踪。在洗澡水的情形中,细节便是浴缸中千千万万个水分子的位置和运动。
晶格
如果将水温降低,直至绝对零度,那么熵发生了什么变化呢?如果我们移去每一点能量,那么水分子会自动以一种独特的组合来排列,冰冻的格子将形成一个理想的冰晶体。如果你熟悉晶体的性质,即使分子太小而无法观测,那么你也可以预测每个分子的位置。一个理想的晶体就如同理想的宝马车一样,没有丝毫的熵。
你可以在图书馆中填塞多少个比特呢
使用语言的模棱两可,以及微小的差异常常被高度重视。事实上,如果语言极为精确,可以被编程为计算机,那么语言和文学必将处于一种尴尬状态,然而科学的精确性要求高度的语言精确度。信息这个词可以指更多的东西:“我认为你的信息是错误的。”“根据你的信息,火星有2颗卫星。”“我获得了信息科学的硕士学位。”“你可以在国会图书馆找到信息。”在这些句子当中,信息以某种特定的方式被使用着。只有在最后一个句子中,信息这个词的意义,才可用作下述发问:“信息在哪里呢?”
我们来追寻定位这个概念。如果我告诉你,格兰特埋在格兰特墓中,[66]大家都会毫不怀疑地认同我,给了你一条信息。但信息在哪里呢?它在你的头脑中吗?在我的头脑中吗?有确定的位置是不是过于抽象呢?它是分布在整个宇宙间,供我们每一个人使用吗?
这里有一个非常具体的回答:信息在记录上,以碳和其他分子组成物质的文字形式存储。在这个意义上,信息是一种实在的东西,几乎如同物质一样。它是如此的具体,以至于我书中的信息和你书中的信息是不同的。在你的书中,写的是格兰特葬在格兰特纪念堂里。你可能猜测到我的书中,与你所说的是同一件事情,但你并不是确切地知道这一点。我的书中或许会写道:格兰特埋在吉萨金字塔中。[67]事实上,任何一本书都不包括信息。格兰特被埋在格兰特纪念堂中的信息在格兰特纪念堂里。
就物理学家所使用的词语的意义来说,信息是由物质[68]组成的,它无处不在。本书中的信息在一个长方体中,大约是10英寸乘以6英寸乘以1英寸,也就是10×6×1或者60立方英寸。[69]本书的封面中隐藏有多少比特的信息呢?在每一行中,大约有70个字符的空间,字母、标点符号、标记和空格。每页有37行,共有350页,大约是100万个字符。
我的计算机键盘上大约有100个符号,包括大写字母、小写字母和标点符号。这意味着本书中所包含的不同信息的数目大约是100自身相乘100万次,也就是100的100万次方。这个数是非常大的,它大约等于将2相乘700万次。本书中包含了700万比特的信息。换句话说,如果用莫尔斯电码来写本书,那么大约需要700万个点和短划。将它除以本书的体积,可得到每立方英寸大约有120 000比特的信息,这就是印刷记录本卷的信息密度。
我曾经从一本书上读到,亚历山大图书馆在它被埋入地下之前,包含万亿比特的信息。虽然这个图书馆不是官方的世界七大奇迹之一,但是它依然属于最伟大的古代奇迹之一。[70]它建于托勒密二世期间,据说通过50万册羊皮卷的形式包括了所有已写的重要文件的复本。没有人知道谁把它烧毁了,但可以确信的是,许多无价的信息灰飞湮灭了。总共是多少信息呢?我猜测古代的一卷羊皮卷大约等于50张现代纸张。如果这些纸张与你所阅读的东西相仿,那么一个羊皮卷将有100万比特,乘以数十万卷。以此推算,托勒密的图书馆包含有半个万亿(1万亿=1012)比特的信息,与我在书中看到的极为相近。
这些信息的丢失是最大的不幸之一,古代学者不能在今天复生。但有件事更不幸,如果包括旮旮旯旯在内的每一个可允许的立方英寸都充满了像本书这样的书。我不知道这个巨大图书馆的精确大小,不过我们假设它为200英尺×100英尺×40英尺,或者是800 000立方英尺,这和现在的大尺寸的公共建筑的大小相同,这将是14亿立方英寸。[71]具备了这些知识,我们就容易估计出可以在这个楼房中填塞多少比特。如果每立方英寸含120 000比特,那么总数是1.7×1014比特。多么巨大的信息量啊!
为何到了书本就打住了呢?如果每本书都缩小到它们自身体积的1/10,那么可以塞进10倍之多的信息。如将信息转移到微缩胶片,则可以允许更多的信息。
包含单个比特所需要的空间大小,存在基本的物理限制吗?数据的一个真实的比特的物理尺寸比原子、原子核和夸克大吗?我们可以不停地分裂空间,并将它装满无穷多的信息吗?或者说存在一个极限吗?这个极限不是来自于实际技术的限制,而是自然界深层次定律所要求的限制。
最小的比特
单个比特比原子小,比夸克小,甚至比中微子还要小,它可能就是宇宙中最基本的构成砖块。比特没有任何结构,它或者就在那里,或者不在那里。约翰·惠勒认为所有的物体都是由比特信息组成的,他用一句格言来表达这个观点:“大千来自比特。”
惠勒想象比特具有最小可能的尺寸,即马克斯·普朗克在一个世纪前发现的基本量子距离,它是所有客体中最基本的。大多数物理学家的头脑中都有一幅图景,认为空间可以被分为微小的普朗克单元,就如同三维的棋盘一样。1比特的信息可以被形象化为一个非常简单的粒子,它被存储在每个单元中。每个单元可能包含一个粒子,也可能不包含。考虑单元的另一种方法是,它们组成了一个巨大的三维的连城游戏。[72]
根据惠勒的“大千来自比特”的哲学,世界在任一个给定的时刻的物理条件,可以用这样一种“信息”来表示。如果我们知道如何阅读密码,我们可以准确地知道,那片时空中所发生的事情。这就是我们通常称为一无所有的空间——真空,或者一块铁,或者原子核的内部吗?
由于世界中的事物都将随时间而变化,星体的运动、粒子衰变、人的生与死,同时〇和×所携带的信息必将随之而变化。在某一时刻,图案可能像上图一样,在另一时刻它可能会被重组。
在惠勒的信息世界中,物理定律包含比特的位形,如何时时刻刻更新变化。如果正确地构建这些规则,可以允许〇和×中波沿着单元格子传播,用来表示光波。一个大而浓密的〇块可能干扰它附近处×和〇的分布,用这种方式可以表示一个重物的引力场。
现在我们回到亚历山大图书馆可以容纳多少信息的问题。我们需要做的是,将图书馆的体积,即14亿立方英寸分成普朗克单元,答案大约是10109比特。
这远比世界中整个因特网、所有的书籍、硬盘和CD所能储存的信息要多,确实非常多。为了理解10109比特是多少信息,我们想象需要多少通常的书籍才能储存它们。答案远远超过了我们可以充塞整个宇宙书籍所包含的信息。
“大千来自比特”的哲学描述了一个由普朗克尺寸的信息胞腔组成的世界,这是一个诱人的世界。它影响了很多不同层次的物理学家,理查德·费曼就是它的一个伟大簇拥者。他花费了大量的时间,来构建由填塞比特的空间所形成的简洁世界,然而这是错误的。正如同我们将要看到的,如果托勒密了解到他的图书馆永远无法容纳超过1074比特的信息,[73]他将会失望的。[74]
我大致可以想象100万是多少:每立方米可以含有100万颗胶姆糖粒。但是10亿或者1万亿又将怎样呢?虽然1万亿比1亿大1000倍,不过形象化地来区分它们比较困难。像1074和10109这样的数字太大,实在难以理解它们,除了说10109比1074大,还能说什么呢。事实上,1074是可以适合亚历山大图书馆的实际比特数,只是我们可以计算的10109比特的太小的一部分。为什么有如此巨大的差异呢?这是随后章节中的一个故事,不过我在这里先给你一个提示。
国王和王子之间的恐惧和猜疑,是历史中一个常见的主题。尽管我并不知道托勒密是否已遇到这样的问题,不过我们可以想象一下,如果他得知敌人将秘密信息藏在图书馆中,会作出什么反应呢?他可能会想到需要通过一个严厉的法律,来禁止任何隐藏的信息。在亚历山大图书馆的情形下,托勒密所假想的法律,要求每一比特的信息从楼外面来看是可见的。为了符合这个法律的要求,信息必须写在图书馆的外壁上。图书管理员被禁止在内壁上隐藏任何信息。外壁上允许使用象形文字、罗马文字、希腊文字和阿拉伯文字。这真正是浪费空间啊!然而这是法律。在这样的前提下,托勒密期望在他的图书馆中所储存的最大比特数是多少呢?
为了找到答案,托勒密和他的随从们,认真地测量了大楼的外部尺寸,计算了外墙和天花板(我们忽略拱门和地板)的面积。他们得出(200×40)+(200×40)+(100×40)+(100×40)+(200×100),等于44 000平方英尺。注意到这里的单位是平方英尺,而不是立方英尺。
然而国王想用的是普朗克单位,而不是用平方英尺来测量面积。我帮你来算,他可以黏在墙上和天花板上的比特数目大约是1074。
作为现代物理学中最惊人、最奇特的发现之一:在真实世界中不需要硬性颁布托勒密法律。自然界已经自然而然地提供了一个这样的定律,毋庸国王硬性颁布它。它是我们发现的最为深刻、最为深奥的自然定律之一:可以存放在一定空间区域中的最大信息量,等于区域的面积,而不是区域的体积。关于在空间中填塞信息的奇怪限制是第18章的主题。
熵和能量
热量是随机的混沌运动的能量,熵是隐藏着的微观信息的数量。现在考虑一壶水,将它降到最可能低的温度,即绝对零度,在此温度下每个分子都被固定在冰晶上,它们的位置丝毫没有模糊性。事实上,即使在没有显微镜的情况下,任何了解冰晶理论的人,都可以准确地说出每个原子的位置。没有任何隐藏的信息,能量、温度和熵都为零。
现在加一点儿热量来使冰升温。分子开始晃动,但只是轻微地摇晃。少量的信息丢失了;如果只有一点儿,那么我们丢失的细节也是一点儿。我们可能错误地将它与另外一些位形相混淆。因此,这点热量使熵增加了,当加入更多的能量时,情况将变得更为糟糕。晶体开始接近熔点,分子之间开始相对滑行。记录细节瞬间被禁止了,换句话说,当能量增加时,熵也增加了。
能量和熵不是同一种东西,能量有多种形式,但这些形式之一的热量,独有地与熵联结在一起了。
与热力学第二定律有关的更多东西
热力学第一定律是能量守恒定律:你既不能创造能量,也不能破坏它;你所能做的只是改变它的形式。第二定律更让人感到泄气:无知总是在增加。
设想一个场景,跳水者从跳板跃进一个游泳池中:
势能→动能→热量
他迅速地静止下来,原来的能量转化成水所增加的微小热能(热量)。伴随着这个微小的能量增加,熵也有一个微小的增加。
跳水者想重复表演,但他有点懒惰,不想再一次爬梯子到跳板。他知道能量永远不会消失,那么他为什么不等待着池水中的热量,转化为他的势能呢?能量守恒不会阻止他被弹到跳水板上,而池水却冷了一点儿:跳水的逆过程。不仅他会被弹到板上,而且池水的熵,也会减少,这意味着无知惊人地减少了。
不幸的是,我们这个浑身湿透的朋友,仅能完成了他的前半个热学过程。在后半个过程中,他会了解到我们都已经清楚的东西:熵总是在增加,熵总是不会减少。势能、动能、化学能和其他形式的能量的改变总是倾向于产生更多的热量,而不倾向于有序的、非混乱的能量形式。这就是第二定律:世界的熵总是在增加。
出于这个原因,一旦汽车刹车,汽车发出了刺耳声停了下来,然而进行刹车并不会使静止汽车运动。地面和空气随机的热量,不能转化成交通工具的更为有序的动能。它同样是海水的热量,不能被用来解决世界能源问题的原因。总之,有序的能量可以退化为热量,反之则不行。
热量、熵和信息这些实际且实用的概念,与黑洞以及物理学的基础有什么关系呢?答案是一切皆相关。在下一章中,我们将会看到黑洞是隐藏信息的基本储蓄器。事实上,它们是自然界中最为密集的信息储蓄器,这可能是黑洞最好的定义。接下来,让我们来看一下雅各比·贝肯斯坦(Jacob Bekenstein)和史蒂芬·霍金是如何意识到这个重要的事实的吧。
第8章 填塞信息
1972年,当我正在西区咖啡馆中和理查德·费曼交谈的时候,一个普林斯顿的研究生雅各比·贝肯斯坦对自己发问:热量、熵、信息与黑洞有什么关系呢?在那时,普林斯顿是世界引力物理的中心。这可能与爱因斯坦生活在那里二十几年有一定的关系,尽管在1972年时,他已经逝世17年了。鼓舞许多才华横溢的年轻物理学家,去学习引力并考虑黑洞问题的是普林斯顿的约翰·惠勒教授,他是现代物理学家中目光最为远大的思想家之一。在那个时期,被惠勒深深影响的许多著名物理学家之中有查尔斯·米什内尔(Charles Misner)、基普·索恩(Kip Thorne)、克劳迪奥·泰特尔鲍姆(Claudio Teitelboim)和雅各比·贝肯斯坦。惠勒早先是费曼的博士论文指导老师,是爱因斯坦的门徒。如同这位伟人本人一样,惠勒认为自然定律的关键在于引力理论。然而与爱因斯坦不同的是,曾经与尼尔斯·玻尔工作过的他,同时也是量子力学的信徒。因此,普林斯顿不仅是引力的中心,同时也是量子引力的中心。
那时,引力理论是理论物理学中的一个相对不出彩的领域,基本粒子物理学家在还原论竞赛中,正向更为精细的结构迈出巨大的一步。原子早已让位于原子核,原子核早已让位于夸克。已发现中微子所扮演的角色,它们是电子的伙伴,像粲夸克这样的新粒子先被假设存在,并在以后的一两年的实验中发现。原子核的放射性最终被掌握了,基本粒子的标准模型即将大功告成。基本粒子物理学家,包括我在内,认为自己有更重要的事情要做,而不值得在引力上面耗费时间。当然,还有诸如史蒂文·温伯格这样的例外,但大多数人认为这个课题意义不大。
回顾以往,这种对引力的蔑视,显然是一种鼠目寸光的观点。是什么原因使得物理学中强有力的领导者们,这些勇敢的先驱者们,对引力没有好奇心呢?答案是,他们认为引力根本不可能如同基本粒子之间的相互作用的方式一样有重要的意义。想象我们有一个开关,允许我们可以关掉原子核和电子之间的电力,因此只剩下引力来使电子在轨道上。当我们翻转开关时,原子会发生什么呢?原子会立即膨胀,因为将它们拉在一起的力减弱了。一个典型的原子会变到多大呢?它比整个可见宇宙大得多!
如果我们剩下电力,而关掉引力,将会发生什么呢?地球将会飞离太阳,但单个原子的改变太小,不会有差异。定量地来说,原子中两个电子之间的引力大约是电力的一百亿亿亿亿亿分之一。[75]
显然不能将基本粒子的世界,与爱因斯坦的引力理论相分离,但惠勒着手探索这个未知海洋时,思维环境正如上述。从表面上来看,惠勒像一个守旧的巨商,其实他是一位活生生的、不可思议的人物,他可以轻易地融入美国最保守社团的董事会议室中。事实上,惠勒的政治立场是保守的,冷战远未结束前,他是一个反共人士。然而,在1960~1970年的前所未有的校园激进主义期间,他也深受学生们的爱戴。克劳迪奥·泰特尔鲍姆现今是最出色的拉丁美洲物理学家,他也是惠勒的学生之一。[76]泰特尔鲍姆是智利一个著名左翼政治家庭中的后裔,是惠勒的众多弟子之一,随后他出名了。他的家庭在政治上与萨尔瓦多·阿连德(Salvador Allende)联盟;泰特尔鲍姆曾无所畏惧、直言不讳地指责专制的皮诺切特王国。然而,尽管惠勒和泰特尔鲍姆的政见不同,他们却有着非比寻常的友谊,这种友谊是建立在彼此的爱和观点的相互尊重之上。
我第一次遇到惠勒是在1961年。那时我是纽约城市学院的一名本科生,有一些非正统的教学记录。我的导师之一哈里·苏达克(Harry Soodak)是一个犹太人、雪茄王、怪癖教授,也是一个左翼分子,和我一样来自工人阶级,他把我带到普林斯顿去见惠勒。尽管我还没有取得本科学位,他希望我能给惠勒留下印象,并收下我做研究生。那时,我是南布朗克斯的一名管道工,我母亲认为我应当穿着正式一些去赴会。对我母亲而言,这意味着我的社会等级和工作服装应当一致。在那些日子中,我在帕罗奥图的管道工服装,和我到斯坦福做演讲时所穿的大致一样。1961年,我的管道工服装与我的父亲以及他所有在南布朗克斯的伙伴们的管道工服装一样,是工装裤、防护上衣和蓝色的法兰绒外套,还有一双沉重的加掌圆头鞋。我同样惹人注目地戴了顶值班风帽,防止泥土和尘垢落到我的头上。
当哈里·苏达克选中我并驾车前往普林斯顿时,他才恍然大悟。雪茄从他嘴中掉了出来,他让我到楼上去换一根,还告诉我约翰·惠勒不是那种家伙。
当我走进这位伟大教授的办公室时,我刹那间明白苏达克的话了。只有一种方式来描述这个欢迎我的人,他像是一个共和党人。我究竟要在大学上层白人的安逸窝里做什么呢?
两个小时后,我完全被迷住了,惠勒热情地描述着他想象的东西:当通过一个巨大的、有力的望远镜观看时,发现空间和时间如何成为一个疯狂的、晃动的量子涨落泡沫世界。他告诉我,物理学中最深奥、最激动人心的问题就是统一爱因斯坦的两个伟大理论,即广义相对论和量子力学。他解释说,只有在普朗克距离上,基本粒子才会呈现出它们的真实本性,这将只与量子几何相关。对一个有抱负的年轻物理学家而言,这个古板的巨商的外貌转变成一个理想的思想家。我想不顾一切地追随他一起进行战斗。
惠勒真的像看起来那样保守吗?我并不是真正清楚,然而他绝不是一个过分正经的说教者。有一次惠勒同他的妻子安娜和我,在海滩上的瓦尔帕莱索咖啡馆里喝些饮料,他站起来去散步,说他想通过比基尼式游泳服,来判断谁是南美女孩。那时,他已是80多岁了。
无论如何,我永远不能真正地成为惠勒的男孩之一了,普林斯顿没有录取我。因此我去了康奈尔,那里的物理学相当乏味。许多年之后,我才感受到和1961年那次同样的震撼。
1967年左右,惠勒开始对卡尔·史瓦西在1917年所描述的引力坍缩物体非常感兴趣。那时,它们被称为黑星或暗星。然而这没有抓住此类物体的精髓所在,即它们是空间中的深洞,它们的引力是不可抗拒的事实。惠勒开始称它们为黑洞,起初这个名字一度被美国一流的物理学杂志《物理评论》所排斥。从今天看来,原因是有趣的:黑洞这个术语被认为是诲淫的![77]然而惠勒通过编辑部来进行反抗,它们就这样被称为了黑洞。[78]
有趣的是,惠勒的另一个杜撰谚语是“黑洞无毛发”。我不知道《物理评论》是否又一次恼火了,但是这个术语遇到困难了。惠勒不打算激怒刊物的编辑,相反,关于黑洞视界的性质,他提出了一个严肃的问题。他所说的“毛发”是指可观测的特点,可能是凸起或者其他的不规则性。惠勒指出,黑洞的视界如同最光滑的光团一样光滑和无特点;事实上它比光团更为光滑。当通过恒星的坍缩而形成黑洞时,视界很快就成为一个极为规则、无特征的球面。除了它们的质量和旋转速度,任何黑洞都和其他黑洞完全相同,或者黑洞就应该是这样的。
雅各比·贝肯斯坦是一个身材矮小、安静的以色列人,不过他温和的学者风度的外观遮盖了他智力上的胆识。1972年他是在黑洞方面感兴趣的惠勒的研究生之一,他对将来可能通过望远镜看到的天体并不感兴趣。贝肯斯坦的激情所在是物理学的基础——基本原理,他意识到黑洞具有某种深奥的地方,会指示出自然定律。他尤其对黑洞如何符合量子力学和热力学感兴趣,后者曾深深地吸引住爱因斯坦。事实上,贝肯斯坦做物理的风格和爱因斯坦非常相似:他们都是思想实验的大师,用很少的数学,进行许多关于物理原理的深入思考,并将它们应用于想象的(但可能的)物理情形。他们两个都能得出影响深远的结论,深刻地影响着未来的物理学。
这里简单地解释一下贝肯斯坦的问题。想象你自身绕着黑洞运动,你拥有一个装满热气体的容器,它具有大量的熵,接着你把容器抛向黑洞。依照标准的思维方式,容器会简单地消失在视界之后。实际上,熵最终会从可见宇宙中消失。根据流行的观点,无特点的、无毛发的视界不可能隐藏任何信息。那么世界的熵减少了,这与热力学第二定律相矛盾(它指明熵永不减少)。第二定律这样如此深刻的原理,违背它是这么容易的吗?爱因斯坦将会为此而感到惊栗。
贝肯斯坦推测,第二定律如此深深地植根于物理规则中,它不会轻易地被违反。他反而作出了一个极端的新建议:黑洞自身必须具有熵。他认为,当你计及整个宇宙中所有的熵时,像恒星、星际气体、行星大气以及浴缸中的热水所丢失的信息时,你必须使每个黑洞包含一定量的熵。而且黑洞越大,它的熵越大。有了这个想法,贝肯斯坦就可以拯救第二定律了,爱因斯坦会毫无疑问地支持他。
下面是贝肯斯坦思考的路径。熵总是与能量联系在一起。熵与某种东西的排列有关,而这些东西在任何情形下都具有能量,即使纸张上的墨汁也是由大量的原子组成的,根据爱因斯坦的说法,它们都有能量,因为质量是能量的一种形式。人们可以说,熵计及了能量比特所有可能的排列方式。
在贝肯斯坦的想象中,将一个容器的热气体投入黑洞时,它增加了黑洞的能量。反过来,这意味着黑洞的质量和尺寸的增加。正如贝肯斯坦所猜想的那样,如果黑洞具有熵,并随着它质量的增加而增加,那么就有了拯救第二定律的机会。黑洞的熵将增加,并足以弥补失去的熵。
按照史蒂芬·霍金的说法,黑洞的熵是如此惊人,以至于他最初忽略它,认为它是谬论。[79]在解释贝肯斯坦是如何猜想到黑洞熵的公式之前,我先说明为什么它是如此惊人。
熵计及了排列的方法,然而是什么东西的排列呢?如果黑洞与可以想象的光头一样毫无特征,那么还有什么可以计算的呢?按照这个逻辑,黑洞的熵应该为零。约翰·惠勒宣称“黑洞无毛发”,这似乎直接与雅各比·贝肯斯坦的理论相矛盾。
如何调和师生之间的矛盾观点呢?我举出一个例子来帮助你了解。一张印在纸上的各种灰色调图案实际上是由微小的黑白点所组成,假设我们有100万个黑点和100万个白点可以用来使用。一个可能的图案是将一张纸分为两半,或者垂直分或者水平分。我们可以使一半为黑,一半为白,这样做的方法只有4种。不过只有几种排列能使我们看到黑白分明、轮廓清晰的图形。典型的黑白分明图形意味着低的熵。
但是,现在让我们去看另外一个极端,在同一个正方形中随机地分配等同数目的黑像素和白像素。我们所看到的是几乎均匀的灰色。如果像素真的很小,所看到的灰色会极为均匀。我们有无穷多的方法来重组黑点和白点,倘若如果没有放大镜,我们就不会注意到它们的差别。在这种情形下,我们看到了高熵常常与均匀的、“无毛的”表面联系在一起。
表面均匀性和高熵的组合暗示了某种重要的东西。它意味着,无论什么系统,必须由非常多的微观物体组成,所谓的微观物体应该满足两个条件:(a)太小而看不到;(b)可以用许多不同方式重组,而不改变系统的基本特征。
贝肯斯坦如何计算黑洞的熵
贝肯斯坦注意到黑洞必须有熵,换句话说,尽管它们表面光滑,然而它们拥有隐藏的信息,这是那些简单而深刻的观测之一,它一下子改变了物理学前进的方向。当我着手写这本通俗读物时,我得到了一个重要的忠告,只能保留一个方程:E=mc2。人们告知我,增加任何一个方程,就会少卖出10 000册书。坦率地说,这违背我的经验。人们喜欢被挑战,只不过是不喜爱繁复。经过大量的自我反省后,我打算冒险。贝肯斯坦的论点是如此出奇地简明、优美,使我感觉到如果不在本书中包括它,那将是一种可悲且弱智化的选材方式。然而,我将花费许多心血来解释结果,因此对于尽量少用数学的读者,尽可放心地跳过这几个简单的方程,而不会失去精华。
贝肯斯坦没有直接讨论,一个已知尺寸的黑洞,可以隐藏多少比特的信息。相反,他考虑的是,如果单个比特信息掉入黑洞中,它的尺寸将如何变化。这类似于提出这样的问题,在浴缸中加入一滴水,水位会上升多少。甚至可以问得更好,如果将单个原子加入,水位会上升多少呢?
这引发了另一个问题:如何加入单个比特呢?贝肯斯坦显然不能将印在一张纸上的单个点添加进去。因为点是由大量数目的原子组成的,纸也是一样,点中的信息远比单个比特大得多。最好的策略是添加一个基本粒子。
例如,假定一个光子掉进黑洞之中,连一个光子所携带的信息都超过单个比特。特别地,需要大量的信息才能准确地知道光子进入视界中的位置。贝肯斯坦为此而巧妙地运用了海森伯的不确定性概念。他认为,只要光子不进入黑洞,那么它的位置应该尽可能是不确定的。这样一个在黑洞某处的“不确定的光子”的存在,将会仅仅输运单个比特信息。
我们回忆一下第4章,分辨光束能力的方法莫过于探查它的波长。在如今这一特殊情形下,贝肯斯坦不想在视界处来分辨一个点,他想让它尽可能地模糊。技巧就是利用一个长波光子,它延展到整个视界。换句话说,如果视界是史瓦西半径Rs,那么光子大致应该有如此相同的波长。至于更长波长的光子并非更好的选择,因为它们会从黑洞上反弹,而不会被捕获。
贝肯斯坦认为,将额外的比特加入到黑洞中会让它有微小的增长,这类似于在气球上增加一个橡皮分子会增大它的尺寸一样。但是计算增长需要一些中间步骤,我首先概要地说明它们。
1.首先,我们需要知道当加入单个比特信息时,黑洞的能量增加多少。当然,这个数目等于携带单个比特信息的光子的能量。因此,确定光子能量是第一步。
2.接下来,我们需要确定当额外的单个比特加入到黑洞中时,黑洞质量的变化。为了完成此事,我们回忆爱因斯坦最著名的方程:
E=mc2
不过我们倒过来使用它,即用增加的能量来计算质量的变化。
3.一旦质量的改变为已知,我们就可以利用拉普拉斯和史瓦西计算出来的同一个公式来计算史瓦西半径的改变(见第2章)。
Rs=2MG/c2
4.最后,我们必须确定视界面积的增加。为此,我们需要利用球面的面积公式
视界面积=4πR2s
我们从单个比特的光子的能量开始。正如我早先所说明的,光子应该有足够长的波长,以至于它在黑洞内部位置是不确定的。这就意味着波长应为Rs,根据爱因斯坦的理论,波长为Rs的光子的能量由下式给出:[80]
E=hc/Rs
在这个公式中,h是普朗克常数,c是光速。结论是,落入黑洞中的单个比特的信息会使黑洞的能量增加hc/Rs。
接下来的一步是计算黑洞质量的改变。为了将能量转化为质量,你需要除以c2,这意味着黑洞质量的增加量为h/Rsc。
质量的改变=h/Rsc
我们插入一些数,来看单个比特信息会使具有太阳质量的黑洞的质量增加多少。[81]
普朗克常数h 6.6×10-34
黑洞的史瓦西半径 3000米(=2英里)
光速c 3×108
牛顿常数G 6.7×10-11
因此,将单个比特信息加入到一个具有太阳质量的黑洞中,会使它的质量有一个极小的变化:
质量的增加=10-45千克
上式表明,增加量惊人地小却“不是空门”。[82]
我们进入到第三步,利用质量和半径之间的关系来计算Rs的改变。用代数符号来表示,答案如下:
Rs的增加=2hG/(Rsc3)
对具有太阳质量的黑洞而言,Rs大约是3000米。如果我们代入所有数值,将会发现半径增长为10-72米。这不仅远小于原子的尺寸,而且远小于普朗克长度(10-35米)。你可能会对这个如此小的改变而感到惊讶,为什么我们要费事计算它呢?然而我们一旦忽略它,就会发生错误。
最后一步是计算出视界面积的改变量。视界面积的增加大约是10-70平方米。这非常小,但又一次“不是空门”。它不仅不是一个空门,而且是某种非常特殊的事物:10-70平方米恰好等于1平方普朗克单位。
这是一个意外吗?如果我们尝试用具有地球质量的黑洞(越橘般大小的黑洞),或者比太阳重10倍质量的黑洞,会发生什么呢?或者用数值,或者用方程,尝试计算它。无论黑洞原来的尺寸大小是什么,我们总能得到下面的规则:
加入1比特信息所导致的任何黑洞的视界面积的增加为1普朗克面积单位或者为1平方普朗克单位。
无论如何,藏身于量子力学和广义相对论原理中的不可分割的比特信息与普朗克尺寸的面积之间有着神秘的联系。
当我在物理课上向斯坦福医学预科班的学生讲述上面内容时,房间后面的某个人发出了一声长而低沉的口哨声,接着说:“酷呜儿。”[83]它的确酷,然而它同时也深刻,很可能是解决量子引力难题的关键。
现在我们想象一点一点地构建黑洞,正如你可能一个原子一个原子地填充浴缸一样。每次你增加单个比特的信息,视界面积增加一个普朗克单位。当黑洞形成时,视界面积等于隐藏在黑洞之中信息的总比特数。这是贝肯斯坦的伟大功绩,总结在下面这条格言中:
以比特来衡量的黑洞熵,正比于以普朗克单位衡量的视界面积。
或者,更为简洁地说:
信息等于面积。
仿佛视界差不多是被不可压缩的信息密密地覆盖着,几乎与桌布被硬币覆盖的方式相同。将另外一个硬币加入到这一堆硬币之中,会使面积增加一个硬币的面积。比特与硬币,这是同一个原理。
这个图景的唯一问题是,视界上没有硬币。如果有,那么当爱丽丝落入黑洞时,会发现它们。[84]根据广义相对论,对自由下落的爱丽丝而言,视界是不可见的一去不复返点。她遇到像铺满硬币的桌布之类的东西的可能性,与爱因斯坦的等效原理直接冲突。
由比特材料密密地堆积在一起的视界,与仅作为一去不复返点的视界表面不一致,这是黑洞战争的宣战原因。
自贝肯斯坦的发现之后,物理学家感到困惑的另一点是:为什么熵正比于视界面积,而不是黑洞内部的体积呢?似乎有很多内部的空间被浪费了。事实上,黑洞看起来像托勒密的图书馆。我们会在第18章中再回到这些问题的讨论,在那里我们将会看到整个世界是一幅全息图。
虽然贝肯斯坦有了正确的想法,即黑洞的熵正比于面积,然而他的论证不是非常的精确,这一点他本人也十分清楚。他没有说熵等于以普朗克单位衡量的面积,因为他的计算中存在许多的不确定性,他只能说黑洞的熵大约等于(或正比于)面积。在物理学中,大约是一个难以捉摸的词。它是2倍的面积还是1/4的面积呢?虽然贝肯斯坦的论证是卓越的,但是它不够强到能用来精确地确定比例因子。
在下一章中,我们将看到贝肯斯坦的关于黑洞熵的发现如何引导史蒂芬·霍金得到他的最伟大的洞见:黑洞不仅像贝肯斯坦所推断的那样具有熵,它们同时也具有温度,并非是物理学家所认为的无限冷的、无生机的物体。黑洞由于它的内部温度而闪光,然而这个温度导致了它们最终的灭亡。
第9章 黑 光
大都市中冬天的风是最冷酷无情的,它在两座平行的大楼之间的夹道中咆哮,在楼角处旋转着,无情地吹打着不幸的行人。1974年非常恶劣的一天,我在曼哈顿北部结冰的街道上长跑,我的长发中悬挂着几个由汗水形成的冰柱。15英里之后,我筋疲力尽了,但距离我温暖的办公室依然还有2英里。我没带钱包,甚至没有必需的20美分去乘地铁回去。不过吉人自有天相,当我走到达克曼街道附近的马路旁时,一辆汽车在我身边停了下来,奥格·彼得森(Aage Petersen)把他的头贴在车窗上。彼得森是丹麦人中可爱的小精灵,在来到美国之前,他曾经是尼尔斯·玻尔的助手。他热爱量子力学,浑身上下充斥着玻尔哲学的气息。
彼得森在汽车中问我是否正在去贝尔弗学校演讲的路上,丹尼斯·西雅玛(Dennis Sciama)将在那里演讲。我说不是。事实上,我对西雅玛和他的演讲一无所知。相反,我正在考虑到大学自助餐厅喝一碗热汤。彼得森说曾经在英格兰见过西雅玛,他毕业于剑桥,是一个十分幽默的英格兰人[85],可以联想到许多好笑话。彼得森认为演讲与黑洞有点关系,是西雅玛的学生所做的某些工作,令整个剑桥为之震惊。我向彼得森许诺我会露面。
耶什华大学的自助餐厅不是配我胃口的地方。食物并不糟糕,汤是清净的(我不在意),热的(这很重要),不过学生之间的谈话激怒了我:它总是关于法律的,[86]不是联邦法、州法或城市法,也不是科学法,而使年轻的耶什华大学的本科生感到愉悦的是,犹太法律中一些吹毛求疵的细节:“如果百事可乐是由建立在正规养猪场附近的工厂生产的,那么它是清净的吗?”“在工厂建立之前是何种胶合板覆盖的?”诸如此类的东西。但是热汤和寒冷的天气鼓励我磨蹭时间来偷听邻桌学生的谈话,这次谈话的主题是我十分关注的卫生纸!激烈的犹太法典辩论是,有关卫生纸在安息日期间是否可能被装进滚轴,或者你必须直接使用没有装进滚轴上的纸。对于拉比·阿基瓦(Rabbi Akiva)的著作的许多段落,其中一个派系推测伟大人物坚持严格地服从某个特定的法律,禁止重新装进滚轴。另一个派系认为举世无双的拉姆巴姆(Rambam)[87]在《困惑中的引导》中说得非常清楚,某些特定的任务被这些犹太法令免除,逻辑分析偏爱装进卫生纸是这些任务之一的观点。半小时过后,争论依然激烈。几个新的拉比们以额外的独创性的、几乎数学的观点加入进来,终于使我对这个争论厌倦了。
你可能会想,这和本书的主题,也就是黑洞有什么关系呢?至关重要的是,我在自助餐厅虚度的光阴让我错过了丹尼斯·西雅玛前40分钟的精彩演讲。
西雅玛是剑桥大学的天文学和宇宙学教授,剑桥是“最聪明、最杰出”的人在有关引力的深奥难题上检验他们的智力的三个地方之一(与普林斯顿和莫斯科并列)[88]。正如在普林斯顿一样,年轻的智利学生由一个具有超凡魅力的又能鼓舞人心的领袖来引导。西雅玛的男孩是一群才华横溢的年轻物理学家,包括布兰登·卡特(Brandon Carter),他构建了宇宙学中的人择原理;马丁·里斯(Martin Rees)先生是大不列颠的皇家天文学家,他现在担任着埃德蒙·哈雷(Edmond Halley)先生的讲座教授(哈雷以彗星而出名);菲利普·坎德拉斯(Philip Candelas)如今是牛津大学的劳斯·鲍尔(Rouse Ball)数学教授;大卫·多伊奇(David Deutsch)是量子计算的发明者之一;约翰·巴罗(John Barrow)是剑桥大学一名卓越的天文学家;乔治·埃利斯(George Ellis)是一名众所周知的宇宙学家。噢,对了,还有史蒂芬·霍金,他现在坐在剑桥大学过去属于艾萨克·牛顿的位子上。事实上,在1974年寒冷的那天,西雅玛所报告的正是霍金的工作,不过那时史蒂芬·霍金的名字还没有在我心中占有位置。
当我到达西雅玛演讲的地方时,演讲的2/3已经过去了。我刹那间感到很遗憾,后悔没有早一点到。一方面,我不希望再次穿上我的跑步装备,到寒冷的雨夹雪中去。另一方面,天已经黑了,到西雅玛演讲结束时无疑会更冷。不过我不仅仅是因为害怕霜冻,而是希望西雅玛的演讲刚刚开始。正如彼得森所说,西雅玛是一个令人感到愉悦的演讲者。笑话确实是杰出的,然而更重要的是,我被黑板上的一个方程给吸引住了。通常情况下,在理论物理演讲结束的时候,黑板上充满了数学符号,但西雅玛很少用方程。当我到达时,黑板上的内容大约如图。在5分钟之内,我已破译了这些符号所代表的含义。事实上,它们都是物理学中常见量的标准符号。虽然我可以断定,它要么非常深刻,要么非常愚蠢。但是我不清楚来龙去脉,这个公式描述的究竟是什么呢?它仅含有自然界中最基本的常数:统领着引力的牛顿常数G位于分母上,它出现在这个位置可真奇怪;光速c表明涉及了狭义相对论;普朗克常数h暗示着量子力学;接下来还有玻尔兹曼常数k。最后那个常数离它该出现的场所实在太远,它究竟在那里做什么呢?玻尔兹曼常数和热量以及熵的微观起源有关,那么热量和熵在量子引力的公式中起什么作用呢?
数字16和π2又是什么呢?它们是数学数字,出现在所有种类的方程之中,不会给出暗示。字母M常常被人用来表示质量,西雅玛的话加强了我对它的意义的印象。几分钟之后,我断定它是黑洞的质量。
很好,黑洞、引力和相对论,这是有意思的,不过再加入量子力学就显得很奇怪。黑洞非常重,和它们的前身(恒星)一样重。然而量子力学却是为小物体:原子、电子和光子准备的。为什么要引入量子力学来讨论像恒星一样重的东西呢?
最令人迷惑的是,方程左边代表温度T,是什么的温度呢?
西雅玛演讲的最后15分钟或20分钟,已足够使我将这些片段连接在一起。西雅玛的一个学生发现了某种非常奇怪的东西:量子力学赋予黑洞以热力学性质,即热量以及伴随着它的温度。黑板上的方程就是黑洞温度的公式。
我想,一颗已耗尽燃料的没有丝毫活力的恒星,居然有一个不同于绝对零度的温度,这是多么奇怪呀!是什么使得西雅玛有如此疯狂的想法呢?
研究这个迷人的公式时,我发现了一个有趣的关系:黑洞的温度反比于它自身的质量。质量越大,温度就越低。如同恒星一样大的一个巨大的天体黑洞,会有微小的温度,比地球上任何实验室中的任何物体都要冷。但真正使我从椅子上跳起来的惊喜是,如果那些微小黑洞存在,那么它们就非常热,比我们想象的任何物体都要热。
然而西雅玛给出了一个更大的惊喜:黑洞蒸发。当时的物理学家认为,黑洞如同钻石一样是永恒的。黑洞一旦形成,物理科学中就没有任何机制可以破坏它或消灭它。在空间中,由死亡的恒星形成的黑空区域,将永远持续无限冷、无限安静的状态。
但是,西雅玛告诉我们,就像太阳光下的水滴一样,黑洞会一点一点地蒸发,并且最终会消失。作为他的解释,电磁热辐射搬走了黑洞的质量。
为了说明为什么西雅玛和他的学生会这样思考,我需要给你们补充一些关于热和热辐射的东西。我将回到黑洞,不过现在先离开一下。
热量和温度
热量和温度是物理学中最为人所熟知的概念。我们都有一个内在的温度计和自动调温箱,进化为我们提供了与冷暖密切相关的感觉。
温暖是热量,寒冷是缺乏热量。然而这种称为热量的东西确切的是什么呢?当浴缸中的水变冷时,热水不热的浴缸将缺损了什么呢?如果你通过一个显微镜来观测微小的尘斑或者悬浮在热水中的花粉粒,你会发现微粒就像喝醉酒的水手一样摇摇晃晃。水越热,微粒表现得越激烈。阿尔伯特·爱因斯坦[89]在1905年首先解释了这个布朗运动,它是快速、有力的分子频繁碰撞微粒的结果。如同其他材料一样,水是由到处运动的分子组成的,它们自身之间、与容器壁,以及与其他外来的杂质之间相互碰撞着。当运动是随机混沌时,我们就称它为热量。对通常物体而言,当你以热量的形式开始增加能量时,将导致分子随机动能的增加。
当然,温度与热量相关。当做矩齿形运动的分子撞击到你的皮肤上时,它们会刺激你的神经末梢,让你体验到了温度的感觉。单个分子的能量越大,你的神经末梢受到的影响就越强,你就感到越热。你的皮肤仅是许多类型的温度计之一,它可以感觉、记录分子的混沌运动。
因此,粗略地说来,一个物体的温度是它单个分子能量的量度。当物体冷却时,能量被排走了,分子缓慢下来。最终,当越来越多的能量被消除时,分子达到了最可能低的能量状态。如果我们忽略量子力学,此时分子运动完全静止下来。在这种情况下,没有更多的能量被排走,物体处在绝对零度。温度不能比它降得更低了。
黑洞是黑体
大多数物体至少反射一点儿光。朱漆是红色的原因在于它反射红光,更为精确地说,它反射了一定波长的组合,我们的眼睛和大脑认为它是红色的。类似的,蓝漆反射我们认为是蓝色的组合。雪是白色的,因为冰晶表面等同地反射所有的可见光。(雪和镜子般的冰片仅有一个区别,这个区别是雪颗粒状的结构朝各个方向散射光,将镜面反射的像打碎为成千上万个微小的部分。)然而某些表面几乎一点也不反射光。任何落入一个黑铁锅的乌黑表面的光被表层吸收,使外层温度升高,最终使铁自身的温度升高。这些就是我们大脑认为黑的东西。物理学家关于一个完全吸收光的物体的术语是黑体。直到西雅玛在纽约(在我的大学里)做演讲时,物理学家一直认为黑洞是黑体。拉普拉斯和米歇尔早在18世纪就想到了这一点,爱因斯坦的史瓦西解则证明了它,当光落入黑洞视界时,它完全被吸收。黑洞视界是所有黑色中最黑的。
然而霍金的发现之前,人们不知道黑洞有温度。如果你在那之前问一个物理学家:“黑洞的温度是多少?”最初的回答很可能是“黑洞没有温度”。你可能会回答:“胡说八道,任何物体都应该有温度。”这个想法可能会激起答案:“是呀,如果黑洞没有热量,那么它一定在绝对零度,也就是最可能低的温度。”事实上,霍金之前的所有物理学家都宣称,黑洞实际上就是黑体,不过是绝对零度的黑体。
现在,说黑体一点都不发出光是不正确的。取一个黑铁锅,将它加热到几百度,它会发出红光,接着是黄光,最终它将有一个明亮的、青白色的外观。
好奇的是,根据物理学家的定义,太阳是一个黑体。你想有多奇怪,太阳远不是你所想象的那样黑。事实上,太阳的表面辐射大量的光,但它一点也不反射光。对于物理学家而言,这样就形成了一个黑体。
让热铁锅降温,它将发出看不见的红外辐射。甚至一个极冷的物体,只要它们不处于绝对零度,也会辐射出某种电磁波。
但是,由黑洞发射出的辐射,绝不能混同于反射光,它是由原子的振动或碰撞所产生的,而且与反射光不同的是,它的颜色依赖于辐射体的温度。西雅玛的解释是怪异的(那时看似有点疯狂)。他说黑洞是黑体,但它们不是处于绝对零度。每个黑洞都具有温度,这依赖于它们的质量。有关它的公式就在黑板上。
他以某种最令人吃惊的方式告诉我们另外一件事情。由于黑洞具有热量和温度,因此它必须辐射电磁波,即光子,与一个热的黑铁锅的方式相同。这意味着损失能量,依据爱因斯坦的E=mc2,能量和质量实际上是同样的东西。如果一个黑洞丢失了能量,那么它同样也丢失了质量。
这将我们带到了西雅玛的故事中的最精彩部分。黑洞的尺寸,即它的视界半径,直接正比于他的质量。如果黑洞的质量减少,那么它的尺寸也会减小。因此当黑洞辐射能量时,它将会收缩,直到它的尺寸不大于一个基本粒子为止,那时它已经一去不复返了。用西雅玛的说法,黑洞就像夏天的池水一样蒸发完了。
演讲自始至终,或者说至少我目睹的那一部分,西雅玛想使每个人都明白,他不是这些观点的首创,他总是说“霍金说这个”和“霍金说那个”。然而尽管西雅玛这样说,我在演讲结束时的感觉是,这个不知名的史蒂芬·霍金仅是一个幸运的学生,他恰好在合适的时间和合适的地点赶上了西雅玛的研究项目。有名的物理学家在演讲中慷慨地提到一个杰出学生的名字是一个传统。无论观点是多么鲜明的,还是多么狂热的,我自然而然地认为它们来源于较为资深的物理学家。
那天晚上我被这个假设深深地纠正了。彼得森连同从贝尔弗来的几位物理学工作者和我,陪西雅玛到小意大利城中一家很好的意大利餐馆去吃饭。用晚餐的过程中,西雅玛告诉了我们有关他这个非凡的学生的一切。
事实上,霍金早已不是学生。当西雅玛谈及“他的学生霍金”时,就像一个诺贝尔奖得主的父亲谈及他的“宝贝”一样。到1974年为止,霍金成了广义相对论界中的一颗新星。他和罗杰·彭罗斯(Roger Penrose)对这个学科作出了重大的贡献。是我个人的无知,让我认为霍金只是这位大方的论文指导老师的学生。
在享用意大利食物、品尝美酒时,我听到了这个前途无量的年轻天才的惊人的、比小说还离奇的传说,他是在被诊断出有神经疾病后才开始发展起来的。霍金是一个聪明但有些自负的研究生,他感染了卢伽雷氏症。[90]疾病的进展很快,他在我们吃晚饭的那个时候,就已经完全瘫痪了。虽然霍金无法写方程,也几乎不能与别人交流,他陷入了痛苦的绝境之中,但他同时迸发了这些大放异彩的新思想。预后诊断更为残忍,卢伽雷氏症是残忍的杀手,人人都说霍金几年之后就会死。与此同时,他正在进行疯狂的、愉快的(西雅玛的话)物理革命。那时听起来,西雅玛描述霍金在面对逆境时的勇气似乎有些夸张。但是在认识霍金近25年之后,我可以说这些话确实是恰如其分。
对我来说,霍金和西雅玛都是未知人物,而且我不清楚蒸发的黑洞是否是一个夸张的故事,一个疯狂的、不成熟的推测,还是名副其实的物理革命。可能当我在听有关卫生纸的犹太法律的时候,我错过了论证的某些重要部分。更有可能的是,西雅玛只是报告了霍金的结论,而没有提供任何专业基础的支撑。毕竟,西雅玛并不是霍金所使用的量子场论中的高等方法方面的专家。正如我早先已说过的,他是几乎不用方程的一个人。
事后看来,我没有将西雅玛的演讲,与两年前我和费曼在西区咖啡馆的简短谈话联系起来,这才是令人感到奇怪的。费曼和我也推测黑洞最终可能会如何分解。但是经过许多个月后,我终于将它们联系在一起了。
霍金的论证
出于个人的原因,霍金最初不相信雅各比·贝肯斯坦这个不出名的普林斯顿学生所得到的奇怪结论。黑洞怎么会有熵呢?关于隐藏的微观结构的无知,与熵联系在一起,正如前文所述,我们无法知道浴缸中温水的每个水分子的精确位置这一事实,与熵相联系。爱因斯坦的引力理论和史瓦西的黑洞解与微观实体之间毫无联系。此外,我们似乎已知道有关黑洞的一切。爱因斯坦的史瓦西解是唯一的精确解。对于给定的质量和角动量值,有且只有一个黑洞解,这就是惠勒所指的“黑洞无毛发”。依照通常的逻辑,一个独一无二的位形(回忆第7章中完美的宝马车)应该没有熵,贝肯斯坦的熵对霍金来说毫无意义,直到他找到自己的方法来考虑它为止。
对于霍金来说,关键是温度,而不是熵。系统存在熵并不意味着它自动地具有温度。[91]能量作为第三个量,同样会出现在等式中。能量、熵和温度的联系可追溯到19世纪早期热力学[92]。你可将德国人尼古拉·莱昂纳尔·萨迪·卡诺(Nicolas Leonard Sadi Carnot)称为蒸汽工程师,它研究的热机就是处理能量、熵和温度三者关系的。他对一个非常实际的问题感兴趣:给定的一定量的蒸汽,如何利用它所含的能量,来做最大效率的有用功呢?怎么样才更划算呢?在这种情形下,有用功可能是加速一个火车头,这要求将热能转化为它的动能。
热能是指分子随机运动的杂乱无章的、混沌的能量。相比之下,火车头的动能是大量分子同时步调一致地运动。因此问题是,如何将给定量的混沌能量转化为有序的能量。问题是那时没有人真正明白,无序的能量和有序的能量准确的含义。卡诺首次将熵定义为无序的量度。
我是机械工程学的一名本科生时,我第一次接触到熵。我和其他同学对热的分子理论一无所知,而且我可以打赌,我们的教授也不清楚。机械设计专业的101课程是《为机械工程者准备的热力学》,它是如此的令人迷惑,以至于到现在为止尽管我是那个班最好的学生,我都无法理解它。最为糟糕的就是熵的概念。如果给某种东西加热,热量的改变除以温度就是熵。每个人都记了下来,但是没有人能理解它是什么,它对我来说是无法理解的。就像“香肠数目的改变除以洋葱化称为勿三勿四[93]一样令我费解。
问题的一部分是我无法真正地理解温度。根据我的教授所讲,温度是用温度计测量所得的东西。我可能会问:“是的,但它究竟是什么呢?”我可以相当肯定,他的回答是:“我已经告诉你了,它是你用温度计所量出来的东西。”
用温度来定义熵是本末倒置的。虽然我们能内在地感知温度,但是能量和熵这样抽象的概念是更为基本的。教授首先应该解释说,熵是隐藏信息的量度,它以比特为单位。接着他可以(正确地)继续说:
温度是当你增加一个比特熵时,一个系统的能量增加。[94]
当你加入一个比特熵时,能量改变吗?这正是贝肯斯坦关于黑洞的理解。很显然,贝肯斯坦计算出了黑洞的温度,只是没有意识到。
霍金立刻看出贝肯斯坦所错过的东西,然而黑洞具有温度这个观点,显得是如此的荒谬,以至于霍金的第一反应,是将荒唐的一切,将熵与温度都打发走。可能他有如此反应的部分原因在于黑洞蒸发也显得非常荒谬。我不太清楚是什么促使霍金重新思考它,但他确实这样做了。利用他娴熟的量子场论的数学技巧,以自己的方式证明了黑洞辐射出能量。
量子场论这个术语反映了随着爱因斯坦发现光子以来的混乱状态。[95]一方面,麦克斯韦令人信服地证明了光是电磁场的波状扰动。与其他人一样,他认为空间是某种可以振动的东西,几乎类似于一碗果冻。这种假想的果冻称为发光以太,如同果冻一样,当它被振动所干扰时(在果冻的情形下,用一个振动的音叉来接触它就可以了),波从扰动中传播出来。麦克斯韦想象振动的电荷,干扰了以太,并发射出光波。爱因斯坦的光子造成了长达20多年的混乱,直到保罗·狄拉克将量子力学中强大的数学技巧应用到电磁场的波动振动,才终止了这场混乱。
对霍金来说,量子场论最重要的推论是电磁场“量子晃动”的观点(见第4章),即使没有振动的电荷来干扰它。在一无所有的空间中,电磁场会晃动,以真空涨落的形式振动。为什么我们感受不到真空的涨落呢?并不是因为它们非常微弱。事实上,小区域空间中的振动是非常剧烈的。然而,由于真空比其他东西所具有的能量低,因此无法将真空涨落的能量转移到我们的身体中。
自然界中还存在另外一种非常显著的晃动,热晃动。一壶冷水和一壶热水的区别在哪里呢?你会说,温度。不过这只是用另一种方式说,热水热,冷水冷。真正的区别在于热水中有更多的能量和熵,热水中充满了混乱的、随机运动的分子,这太过于复杂而无法记录。这种运动和量子力学毫无联系,而且也不微弱。将你的手伸入水壶中,你会轻易地感受到热涨落。
由于水分子太小,我们无法看到单个分子的热晃动,但是直接探测到晃动的效应并不难。正如我早先所提到的,悬浮在一杯热水中的花粉粒会做随机的、跳跃的布朗运动,这是由于水中的热量使得水分子随机地撞击花粒,与量子力学毫无联系。当你将手指放入杯中时,同样随机的撞击运动,会刺激你皮肤上的神经末梢,使你感受到水的温暖。你的皮肤和神经从周围热量中吸收了一部分热量。
甚至在没有水、空气或其他物质时,热敏感神经可以被黑体辐射的热振动刺激。在这种情形下,神经通过吸收光子的形式来从周围吸收热量。但是只有当温度高于绝度零度时,这才可能发生。在绝对零度,电场和磁场的量子晃动更为微弱,没有同样明显的效应。
热和量子这两种晃动非常不同,在通常情况下,它们不相互混淆在一起。量子涨落是真空中不可分的一部分,无法将它消除,但热涨落是由于过剩能量而产生的。为什么我们感受不到量子涨落,它们与热涨落的区别究竟在哪里?尽管在一本书中,试图避免复杂的数学而使用任何类比或图像不免会产生它的逻辑缺陷,但这一切仍处于“可解释的边缘”。然而如果你想把握黑洞战争中什么是存亡攸关之处,某些解释必定是需要的。只要记住费曼关于解释量子现象的告诫即可。(见第4章的“预测未来”一节)
量子场论以定量化的方式解释了两种涨落。热涨落产生于实光子的出现,它们撞击我们的皮肤并向它转移能量。量子涨落是由于虚光子对所引起的,虚光子对产生之后迅速被真空吸收回去。下面是有关实光子和虚光子对时空的费曼图,垂直的轴为时间,水平的为空间。实光子的世界线是没有尽头的虚线,它们的存在表明热和热晃动。但是如果空间处在绝对零度,那么就不存在实光子,仅存在虚光子的微观圈,它们迅速地闪现又不复存在。虚光子对是真空的一部分,也就是我们通常所认为的一无所有的空间,即使在绝对零度也是如此。
在通常情形下,两种晃动之间不会有任何混淆之处。然而黑洞的视界非同寻常,在靠近视界处,两种涨落以任何人都无法预期的方式混合在一起。为了明白它是如何发生的,想象爱丽丝在一个绝对零度的环境(即完美的真空)中自由地落向黑洞。她被虚光子对所包围,却无法看到它们,因为在她身旁没有实光子。
现在考虑徘徊在视界之外的鲍勃。对他而言,事情更加混乱。爱丽丝没有注意到的某些虚光子对,可能一部分处于视界内部,一部分处于视界外部,但是视界后面的粒子和鲍勃不相干。鲍勃看到单个光子,无法认出它属于哪一个虚光子对。信不信由你,这样的一个光子陷于视界外部,而与它成对的伙伴在视界之后,它恰好就如同一个真实的热光子一样,影响到鲍勃和他的皮肤。在靠近视界处,热和量子的分离依赖于观测者:爱丽丝探测到的(或没有探测到的)是量子晃动,鲍勃探测到的是热能。对黑洞而言,热晃动和量子晃动是一个事物的两面。当我们在第20章中了解爱丽丝的飞机时,会回到这一点。
霍金利用量子场论的数学计算出,对黑洞的真空涨落的干扰,将导致光子的发射,黑洞的视界就仿佛是一个热的黑体一样,这些光子称为霍金辐射。最有趣的是,如果贝肯斯坦曾作出此类论点的话,那么黑洞辐射的温度,大约就像贝肯斯坦的观点所给出的那样。事实上,霍金比贝肯斯坦走得更远,他的方法是如此的精确,以至于他可以计算出黑洞的精确温度和熵。贝肯斯坦宣称,在普朗克单位下,只有熵正比于视界面积。霍金不再需要使用“正比于”这样的模糊术语,根据他的计算,在普朗克单位下黑洞的熵,精确地等于视界面积的1/4。
霍金所导出的黑洞的温度公式,正是西雅玛在黑板上所写的公式:
注意,在霍金的公式中,黑洞的质量出现在分母上。这意味着质量越大,黑洞越冷;相反,质量越小,黑洞越热。
我们对一个黑洞来具体应用这个公式。下面是常数的值。[96]
c=3×108
G=6.7×10-11
h=7×10-34
k=1.4×10-23
我们以一个质量为太阳5倍的恒星为例,它最终坍缩而形成一个黑洞。它的质量用千克表示为:
M=1031
如果将这些数值代入霍金的公式中,我们发现这个黑洞的温度是10-8开。这是一个非常小的温度,大约只比绝对温度高亿分之一度[97]。自然界中没有如此低的温度,恒星之间,甚至是星系之间的空间也比这个温度要高很多。
星系中心甚至存在温度更低的黑洞。它是比恒星重10亿倍、大10亿倍的黑洞,同样也要冷10亿倍。但是,我们同样可以仔细分析小得多的黑洞。假定某种大灾难事件侵袭地球。地球的质量大约是恒星质量的百万分之一。最终所形成的黑洞具有了不起的温度,大约为0.01开,这比恒星形成的黑洞的温度高,但依然是令人畏惧地冷,比液氢温度还低,远比固态的氧温度低。我们依样画葫芦地讨论月球质量般的黑洞,可得其温度为1开。
现在来考虑当黑洞发射霍金辐射和蒸发时,究竟发生了什么。由于质量减少使黑洞收缩了,因此导致温度上升了。黑洞迟早会变热。当它的质量为顽石那样大小时,它的温度会上升到100亿亿度。当它的质量为普朗克尺度时,温度会上升到1032度。宇宙中可能存在此种情况的地方和时间,只是在大爆炸开始时期。
霍金的计算表明,黑洞是如何蒸发的,这是才华横溢的杰作。我相信,当它的影响被充分地理解时,物理学家会认识到它是伟大科学革命的起源。准确地了解这个革命将如何进行到底,尚言之过早,但它会触及深层次的东西:空间和时间的本性、基本粒子的意义和宇宙的神秘起源。物理学家们不断地问,霍金能否位于有史以来最伟大的物理学家之列,以及他在等级中的级别。为了回应这些怀疑霍金是伟人的人,我建议他们回过头去阅读他在1975年的论文《由黑洞引起的粒子产生》。
然而无论他有多么伟大,至少在一种情况下,史蒂芬·霍金失去了他的比特的踪迹,这是引起黑洞战争的原因。