2.5 寻找最大的K个数
在面试中,有下面的问答:
问:有很多个无序的数,我们姑且假定它们各不相等,怎么选出其中最大的若干个数呢?
答:可以这样写:int array[100]……
问:好,如果有更多的元素呢?
答:那可以改为:int array[1000]……
问:如果我们有很多元素,例如1亿个浮点数,怎么办?
答:个,十,百,千,万……那可以写:float array[100000000]……
问:这样的程序能编译运行么?
答:嗯……我从来没写过这么多的0……
分析与解法
【解法一】
当学生们信笔写下float array[10000000],他们往往没有想到这个数据结构要如何在电脑上实现,是从当前程序的栈(Stack)中分配,还是堆(Heap),还是电脑的内存也许放不下这么大的东西?
我们先假设元素的数量不大,例如在几千个左右,在这种情况下,那我们就排序一下吧。在这里,快速排序或堆排序都是不错的选择,他们的平均时间复杂度都是O(Nlog2N)。然后取出前K个,O(K)。总时间复杂度O(Nlog2N)+O(K)=O(N*log2N)。
你一定注意到了,当K=1时,上面的算法也是O(N*log2N)的复杂度,而显然我们可以通过N-1次的比较和交换得到结果。上面的算法把整个数组都进行了排序,而原题目只要求最大的K个数,并不需要前K个数有序,也不需要后N-K个数有序。
怎么能够避免做后N-K个数的排序呢?我们需要部分排序的算法,选择排序和交换排序都是不错的选择。把N个数中的前K大个数排序出来,复杂度是O(N*K)。
那一个更好呢?O(Nlog2N)还是O(NK)?这取决于K的大小,这是你需要在面试者那里弄清楚的问题。在K(K<=log2N)较小的情况下,可以选择部分排序。
在下一个解法中,我们会通过避免对前K个数排序来得到更好的性能。
【解法二】
回忆一下快速排序,快排中的每一步,都是将待排数据分做两组,其中一组的数据的任何一个数都比另一组中的任何一个大,然后再对两组分别做类似的操作,然后继续下去……
在本问题中,假设N个数存储在数组S中,我们从数组S中随机找出一个元素X,把数组分为两部分Sa和Sb。Sa中的元素大于等于X,Sb中元素小于X。
这时,有两种可能性:
1.Sa中元素的个数小于K,Sa中所有的数和Sb中最大的K-|Sa|个元素(|Sa|指Sa中元素的个数)就是数组S中最大的K个数。
2.Sa中元素的个数大于或等于K,则需要返回Sa中最大的K个元素。
这样递归下去,不断把问题分解成更小的问题,平均时间复杂度O(N*log2K)。伪代码如下:
代码清单2-11
【解法三】
寻找N个数中最大的K个数,本质上就是寻找最大的K个数中最小的那个,也就是第K大的数。可以使用二分搜索的策略来寻找N个数中的第K大的数。对于一个给定的数p,可以在O(N)的时间复杂度内找出所有不小于p的数。假如N个数中最大的数为Vmax,最小的数为Vmin,那么这N个数中的第K大数一定在区间[Vmin,Vmax]之间。那么,可以在这个区间内二分搜索N个数中的第K大数p。伪代码如下:
代码清单2-12
伪代码中f(arr,N,Vmid)返回数组arr[0,…,N-1]中大于等于Vmid的数的个数。
上述伪代码中,delta的取值要比所有N个数中的任意两个不相等的元素差值之最小值小。如果所有元素都是整数,delta可以取值0.5。循环运行之后,得到一个区间(Vmin,Vmax),这个区间仅包含一个元素(或者多个相等的元素)。这个元素就是第K大的元素。整个算法的时间复杂度为O(Nlog2(|Vmax-Vmin|/delta))。由于delta的取值要比所有N个数中的任意两个不相等的元素差值之最小值小,因此时间复杂度跟数据分布相关。在数据分布平均的情况下,时间复杂度为O(Nlog2(N))。
在整数的情况下,可以从另一个角度来看这个算法。假设所有整数的大小都在[0,2m-1]之间,也就是说所有整数在二进制中都可以用m bit来表示(从低位到高位,分别用0,1,…,m-1标记)。我们可以先考察在二进制位的第(m-1)位,将N个整数按该位为1或者0分成两个部分。也就是将整数分成取值为[0,2m-1-1]和[2m-1,2m-1]两个区间。前一个区间中的整数第(m-1)位为0,后一个区间中的整数第(m-1)位为1。如果该位为1的整数个数A大于等于K,那么,在所有该位为1的整数中继续寻找最大的K个。否则,在该位为0的整数中寻找最大的K-A个。接着考虑二进制位第(m-2)位,以此类推。思路跟上面的浮点数的情况本质上一样。
对于上面两个方法,我们都需要遍历一遍整个集合,统计在该集合中大于等于某一个数的整数有多少个。不需要做随机访问操作,如果全部数据不能载入内存,可以每次都遍历一遍文件。经过统计,更新解所在的区间之后,再遍历一次文件,把在新的区间中的元素存入新的文件。下一次操作的时候,不再需要遍历全部的元素。每次需要两次文件遍历,最坏情况下,总共需要遍历文件的次数为2*log2(|Vmax-Vmin|/delta)。由于每次更新解所在区间之后,元素数目会减少。当所有元素能够全部载入内存之后,就可以不再通过读写文件的方式来操作了。
此外,寻找N个数中的第K大数,是一个经典问题。理论上,这个问题存在线性算法。不过这个线性算法的常数项比较大,在实际应用中效果有时并不好。
【解法四】
我们已经得到了三个解法,不过这三个解法有个共同的地方,就是需要对数据访问多次,那么就有下一个问题,如果N很大呢,100亿?(更多的情况下,是面试者问你这个问题)。这个时候数据不能全部装入内存(不过也很难说,说知道以后会不会1T内存比1斤白菜还便宜),所以要求尽可能少的遍历所有数据。
不妨设N>K,前K个数中的最大K个数是一个退化的情况,所有K个数就是最大的K个数。如果考虑第K+1个数X呢?如果X比最大的K个数中的最小的数Y小,那么最大的K个数还是保持不变。如果X比Y大,那么最大的K个数应该去掉Y,而包含X。如果用一个数组来存储最大的K个数,每新加入一个数X,就扫描一遍数组,得到数组中最小的数Y。用X替代Y,或者保持原数组不变。这样的方法,所耗费的时间为O(N*K)。
进一步,可以用容量为K的最小堆来存储最大的K个数。最小堆的堆顶元素就是最大K个数中最小的一个。每次新考虑一个数X,如果X比堆顶的元素Y小,则不需要改变原来的堆,因为这个元素比最大的K个数小。如果X比堆顶元素大,那么用X替换堆顶的元素Y。在X替换堆顶元素Y之后,X可能破坏最小堆的结构(每个结点都比它的父亲结点大),需要更新堆来维持堆的性质。更新过程花费的时间复杂度为O(log2K)。
图2-1
图2-1是一个堆,用一个数组h[]表示。每个元素h[i],它的父亲结点是h[i/2],儿子结点是h[2i+1]和h[2i+2]。每新考虑一个数X,需要进行的更新操作伪代码如下:
代码清单2-13
因此,算法只需要扫描所有的数据一次,时间复杂度为O(Nlog2K)。这实际上是部分执行了堆排序的算法。在空间方面,由于这个算法只扫描所有的数据一次,因此我们只需要存储一个容量为K的堆。大多数情况下,堆可以全部载入内存。如果K仍然很大,我们可以尝试先找最大的K'个元素,然后找第K'+1个到第2K'个元素,如此类推(其中容量K'的堆可以完全载入内存)。不过这样,我们需要扫描所有数据ceil②(K/K')次。
【解法五】
上面类快速排序的方法平均时间复杂度是线性的。能否有确定的线性算法呢?是否可以通过改进计数排序、基数排序等来得到一个更高效的算法呢?答案是肯定的。但算法的适用范围会受到一定的限制。
如果所有N个数都是正整数,且它们的取值范围不太大,可以考虑申请空间,记录每个整数出现的次数,然后再从大到小取最大的K个。比如,所有整数都在(0,MAXN)区间中的话,利用一个数组count[MAXN]来记录每个整数出现的个数(count[i]表示整数i在所有整数中出现的个数)。我们只需要扫描一遍就可以得到count数组。然后,寻找第K大的元素:
代码清单2-14
极端情况下,如果N个整数各不相同,我们甚至只需要一个bit来存储这个整数是否存在。
当实际情况下,并不一定能保证所有元素都是正整数,且取值范围不太大。上面的方法仍然可以推广适用。如果N个数中最大的数为Vmax,最小的数为Vmin,我们可以把这个区间[Vmin,Vmax]分成M块,每个小区间的跨度为d=(Vmax-Vmin)/M,即[Vmin,Vmin+d],[Vmin+d,Vmin+2d],……然后,扫描一遍所有元素,统计各个小区间中的元素个数,跟上面方法类似地,我们可以知道第K大的元素在哪一个小区间。然后,再对那个小区间,继续进行分块处理。这个方法介于解法三和类计数排序方法之间,不能保证线性。跟解法三类似地,时间复杂度为O((N+M)log2M(|Vmax-Vmin|/delta))。遍历文件的次数为2log2M(|Vmax-Vmin|/delta)。当然,我们需要找一个尽量大的M,但M取值要受内存限制。
在这道题中,我们根据K和N的相对大小,设计了不同的算法。在实际面试中,如果一个面试者能针对一个问题,说出多种不同的方法,并且分析它们各自适用的情况,那一定会给人留下深刻印象。
注:本题目的解答中用到了多种排序算法,这些算法在大部分的算法书籍中都有讲解。掌握排序算法对工作也会很有帮助。
扩展问题
1.如果需要找出N个数中最大的K个不同的浮点数呢?比如,含有10个浮点数的数组(1.5,1.5,2.5,2.5,3.5,3.5,5,0,-1.5,3.5)中最大的3个不同的浮点数是(5,3.5,2.5)。
2.如果是找第k到m(0<k<=m<=n)大的数呢?
3.在搜索引擎中,网络上的每个网页都有“权威性”权重,如page rank。如果我们需要寻找权重最大的K个网页,而网页的权重会不断地更新,那么算法要如何变动以达到快速更新(incremental update)并及时返回权重最大的K个网页?
提示:堆排序?当每一个网页权重更新的时候,更新堆。还有更好的方法吗?
4.在实际应用中,还有一个“精确度”的问题。我们可能并不需要返回严格意义上的最大的K个元素,在边界位置允许出现一些误差。当用户输入一个query的时候,对于每一个文档d来说,它跟这个query之间都有一个相关性衡量权重f(query,d)。搜索引擎需要返回给用户的就是相关性权重最大的K个网页。如果每页10个网页,用户不会关心第1000页开外搜索结果的“精确度”,稍有误差是可以接受的。比如我们可以返回相关性第10001大的网页,而不是第9999大的。在这种情况下,算法该如何改进才能更快更有效率呢?网页的数目可能大到一台机器无法容纳得下,这时怎么办呢?
提示:归并排序?如果每台机器都返回最相关的K个文档,那么所有机器上最相关K个文档的并集肯定包含全集中最相关的K个文档。由于边界情况并不需要非常精确,如果每台机器返回最好的K'个文档,那么K'应该如何取值,以达到我们返回最相关的90%K个文档是完全精确的,或者最终返回的最相关的K个文档精确度超过90%(最相关的K个文档中90%以上在全集中相关性的确排在前K),或者最终返回的最相关的K个文档最差的相关性排序没有超出110%K。
5.如第4点所说,对于每个文档d,相对于不同的关键字q1,q2,…,qm,分别有相关性权重f(d,q1),f(d,q2),…,f(d,qm)。如果用户输入关键字qi之后,我们已经获得了最相关的K个文档,而已知关键字qj跟关键字qi相似,文档跟这两个关键字的权重大小比较靠近,那么关键字qi的最相关的K个文档,对寻找qj最相关的K个文档有没有帮助呢?