[1] 参见Hal Hellman,Great Feuds in Mathematics: Ten of the Liveliest Disputes Ever(Wiley,2006),它给出了详尽的介绍。

    [2] 莫里斯·克莱因,Mathematics: The Loss of Certainty(Oxford University Press,1980),323。

    [3] 罗杰·彭罗斯,The Road to Reality: A Complete Guide to the Laws of the Universe(Alfred A. Knopf,2005),13。

    [4] 引自Ben H. Yandell,The Honors Class:Hilbert’s Problems and Their Solvers(A. K. Peters,2002),395。

    [5] 亚里士多德,Physics,译者Robin Waterfield(Oxford World’s Classics,1996),Book III,第4章,65。

    [6] 同上,Book III,第6章,72。

    [7] 同上,Book III,第6章,73。

    [8] 同上,Book III,第8章,76-7。

    [9] 斯蒂芬·克尔纳,“Continuity”in Paul Edwards,ed.,The Encyclopedia of Philosophy(Macmillan,1967),Vol. 2,205。

    [10] 这个引用并没有在克罗内克的作品中找到。它第一次出现在1893年的“Die ganzen Zahlen hat der liebe Gott gemacht, alles andere ist Menschenwerk”。参见William Ewald,ed.,From Kant to Hilbert:A Source Book in the Foundations of Mathematics(Oxford University Press,1996),Vol. II,942。在1922年的“The New Grounding of Mathematics。 First Report”中, 希尔伯特用单数形式引用它。原话为“Die ganze Zahl schuf der liebe Gott, alles andere ist Menschenwerk”参见From Kant to Hilbert,Vol. II,1120。

    [11] Harold Edwards,“Kronecker’s Place in History”,in William Aspray and Philip Kitcher,eds.,History and Philosophy of Modern Mathematics(University of Minnesota Press,1988),139-144。

    [12] 格奥尔格·康托尔,“Foundations of a General Theory of Manifolds: A Mathematico-Philosophical Investigation into the Theory of the Infinite”,in From Kant to Hilbert,Vol. II, pgs.895-896。

    [13] 沃尔特,“Brower’s Intuitionist Program”,in Paolo Mancosu,ed.,From Brouwer to Hilbert: The Debate on the Foundations of Mathematics in the 1920s(Oxford University Press,1998),5。

    [14] 布劳威尔,“Intuitionism and Formalism”,Bulletin of the American Mathematical Society,Vol. 20(1913),81-96。

    [15] 同上。

    [16] 布劳威尔,“On the Significance of the Principle of Excluded Middle in Mathematics, Especially in Function Theory”(1923),in jean van Heijenoort. ed.,From Frege to Gödel:A Source Book in Mathematical Logic,1879-1931(Harvard University Press,1967),337。

    [17] 康斯坦斯·雷德,Hilbert(Springer,1970,1996),184。

    [18] Jonathan Borwein,The Brouwer-Heyting Sequence,http://www.cecm.sfu.ca/∼jborwein/brouwer.html。

    [19] F1oy E. Andrews,“The Principle of Excluded Middle Then and Now: Aristotle and Principia Mathematica”,Animus,Vol. 1(1996),http://www2.swgc.mun.ca/animus/1996vol1/andrews.pdf。

    [20] 希尔伯特,“On the Infinite”(1925),参见From Frege to Gödel一书,375-376。

    [21] G. Kreisel 和纽曼,“Luitzen Egbertus Jan Brouwer.1881-1966”,Biographical Memoirs of Fellows of the Royal Society,Vol. 15(Nov. 1969),39-68。

    [22] 例如,参见Oliver Aberth,Computable Analysis(McGraw-Hill,1980)。

    [23] 在From Brouwer to Hilbert一书中重印,28-35。

    [24] William Aspray,The Princeton Mathematics Community in the 1930s: An Oral-History Project。An interview with Alonoz Church at the University of California On 17 May 1984,http: //www.princeton. edu/∼mudd/finding_aids/mathoral/pmco5.htm。

    [25] 邱奇,“A Set of Postulates for the Foundation of Logic”,The Annals of Mathematics,second Series,Vol. 33,No. 2(Apr. 1932),346。

    [26] 克莱尼,“Origins of Recursive Function Theory,” Annals of the History of Computing, Vol. 3. No. 1(Jan. 1981),62.

    [27] Julian Havil,Gamma:Exploring Euler’s Constant(Princeton University Press,2003),89。

    [28] 这一术语来自Edmund Husserl(1859——1938),参见 Mark van Atten,Dirk van Dalen,and Richard Tieszen,“Brouwer and Weyl: The Phenomenology and Mathematics of the Intuitive Continuum”,Philosophia Mathematica,Vol. 10,No. 2(2002),207。

    [29] Mark van Atten,On Brouwer(Wadsworth,2004),31。

    [30] van Atten,van Dalen,and Tieszen,“Brouwer and Weyl: The Phenomenology and Mathematics of the Intuitive Continuum,”212。

    [31] van Atten,van Dalen,and Tieszen,“Brouwer and Weyl: The Phenomenology and Mathematics of the Intuitive Continuum,”212-213。

    [32] 布劳威尔译为“The Structure of the Continuum”,From Kant to Hilbert,Vol. II,1186-1197。